S. E. P. S. E. I. T.

$\verb|DIRECCION| \qquad | GENERAL \qquad | DE \qquad | INSTITUTOS \qquad | TECNOLOGICOS \\$

1. IDENTIFICACION DEL PROGRAMA DESARROLLADO POR UNIDADES DE APRENDIZAJE

NOMBRE DE LA ASIGNATURA: MATEMATICAS II (CALCULO VECTORIAL) (3-2-8)

NIVEL: LICENCIATURA

CARRERA: INGENIERIA BIOQUIMICA INGENIERIA CIVIL

INGENIERIA ELECTRICA INGENIERIA ELECTROMECANICA INGENIERIA ELECTRONICA INGENIERIA EN GEOCIENCIAS INGENIERIA INDUSTRIAL INGENIERIA INDUSTRIAL
INGENIERIA MECANICA
INGENIERIA EN MATERIALES
INGENIERIA QUIMICA
INGENIERIA EN SISTEMAS COMPUTACIONALES

CLAVE: ACM-9302

2. HISTORIA DEL PROGRAMA

LUGAR Y FECHA DE ELABORACION O REVISION	PARTICIPANTES	OBSERVACIONES (CAMBIOS Y JUSTIFICACION)
Del 28 de Septiembre al 2 de Octubre de 1992. I. T. de Apizaco.	Comité de Consolidación de las Ciencias Básicas de las carreras de Ingeniería.	Análisis de la congruencia interna y externa de las carreras de Ingeniería del Sistema Nacional de Institutos Tecnológicos.
Del 24 al 28 de mayo de 1993. México D.F.	Comités de Reforma de la Educación Superior Tecnoló_ gica.	Análisis de la congruencia interna y externa de las carreras de Ingeniería del Sistema Nacional de Institutos Tecnológicos conforme a los linea mientos de la Reforma de la Educación Superior Tecnológica.

O B S E R V A C I O N E S

Debido a la importancia y estructura del programa, se utilizan 5 hrs. frente a grupo distribuidas de la

Se reubicó la unidad de matrices y determinantes de Matemáticas II de Ingeniería Bioquímica, ubicándola en el programa de Matemáticas III de la misma especialidad, debido a una redundancia parcial que tenía con el programa de Matemáticas III.

Se enriquecieron y reubicaron los contenidos temáticos de la asignatura Matemáticas II en las carreras: In-geniería Química, Ingeniería en Sistemas Computacionales, Ingeniería Electrónica, Ingeniería Eléctrica, In-geniería Bioquímica, Ingeniería Mecánica, Ingeniería Civil, Ingeniería en Geociencias e Ingeniería en

En la carrera de Ingeniería Electrónica ANALISIS VECTORIAL se cambia por MATEMATICAS II y ALGEBRA LINEAL por MATEMATICAS III.

3. UBICACION DE LA ASIGNATURA

a) RELACION CON OTRAS ASIGNATURAS DEL PLAN DE ESTUDIO

ANTERIORES		
ASIGNATURAS	TEMAS	
ING. BIOQUIMICA		
Matemáticas I	- Cálculo diferencial e integral	
ING. CIVIL Matemáticas I	- Todos	

POSTEI	RIORES	
ASIGNATURAS	TEMAS	
Matemáticas III	- Ecuaciones diferencia- les ordinarias	
Termodinámica	- Primera y segunda ley - Trabajo Relaciones de - Relaciones de Maxwell	
Matemáticas IV	-Todos	
Introducción a la Mecáni- ca del Medio Contínuo	- Todos	
Matemáticas III	- Matrices y determinan- tes	

(Continuación)

ANTER	ANTERIORES		POSTERIORES		
ASIGNATURAS	TEMAS		ASIGNATURAS	TEMAS	
ING. ELECTRICA Matemáticas I	- Limites de funciones - Derivadas de funciones algebráicas y trascen- dentes - Integración de funcio- nes algebráicas y - trascendentes - Areas entre curvas		Teoría Electromagnética	-Todos	
ING. ELECTROMECANICA	- Longitud de arco				
Matemáticas I	- Límite y continuidad de una función - Concepto de derivada - Interpretación geométrica y física de la derivada - Fórmulas para obtener derivadas ordinarias - Derivadas parciales - Integración de funciones escalares - Utilización de la integración para calcular áreas de superficies - Cálculo del volumen de sólidos por medio de la integración		Matemáticas IV Termodinámica	- Todos	
ING. ELECTRONICA					
Matemáticas I	- Derivadas de funciones - Regla de la cadena - Métodos de integración		Electricidad y Magnetismo Teoría Electromagnética	- Análisis vectorial - Densidad de flujo eléctrico - Energía potencial - Ecuaciones de Maxwell - Radiación	
ING. EN GEOCIENCIAS					

Matemáticas I	- Todos	Matemáticas III	- Todos	
ING. INDUSTRIAL				
Matemáticas I	- Todos	Matemáticas III	- Todos	

(Continuación)

ANTE	RIORES	
ASIGNATURAS	TEMAS	A
ING. MECANICA		
Matemáticas I	- Límites de una función ordinaria, derivación e integrales definidas	Matemátic
	e indefinidas	Dinámica
ING. EN MATERIALES		
Matemáticas I	- Todos	Matemátic
		Métodos N
ING. QUIMICA		
Matemáticas I	- Derivación e integra- ción de funciones	Física I
		Termodiná
		Física I
ING. EN SISTEMAS		
COMPUTACIONALES		İ
Matemáticas I	- Todos	Matemátic

POSTE	RIORES	
ASIGNATURAS	TEMAS	
Matemáticas III	- Transformaciones li- neales	
Dinámica	- Espacios vectoriales sobre Rén; producto interno	
Matemáticas IV	- Todos	
Métodos Numéricos	- Solución de sistemas de ecuaciones	
Física II	- Campos eléctricos y magnéticos	
Termodinámica	- Teoría cinética de los gases. Conservación de la energía. Entropía, etc.	
Física I	- Cinemática y dinámica de la partícula - Trabajo y energía	
Matemáticas IV	- Todos	

b) APORTACION DE LA ASIGNATURA AL PERFIL DEL EGRESADO

INGENIERIA BIOQUIMICA

Los conocimientos adquiridos permitirán al egresado desarrollar las habilidades necesarias en los procedimientos matemáticos, para aplicarlos en la solución de problemas de Ingeniería Bioquímica.

INGENIERIA CIVIL

Desarrolla en los estudiantes las habilidades para egresar, las características vectoriales de los fenómenos - que son objeto de la actividad civil, como modelos matemáticos a operar.

INGENIERIA ELECTRICA

Establecer las bases necesarias que permiten la comprensión de la electricidad y magnetismo y la técnica electromagnética, base fundamental de todas las áreas de la Ingeniería Eléctrica.

INGENIERIA ELECTROMECANICA

Proporciona los conocimientos necesarios para entender los procesos que aparecen en Ingeniería Electromecánica, así como para hacerles innovaciones.

INGENIERIA ELECTRONICA

Dar las bases teóricas para la comprensión de los fundamentos de electrostática y electrodinámica, así como desarrollar el pensamiento abstracto.

INGENIERIA EN GEOCIENCIAS

Proporcionará las herramientas básicas que lo llevarán a investigar, optimizar y diseAar procesos y proyectos - de Ingeniería.

INGENIERIA INDUSTRIAL

Interpretar, resolver y elaborar modelos matemáticos que contribuyan al desarrollo y aumento de la productividad dentro de las áreas industrial, comercial y de servicios.

INGENIERIA MECANICA

Aplicar el cálculo vectorial en la solución de problemas y actividades que impliquen la optimización de sistemas, diseAo y evaluación de proyectos.

INGENIERIA EN MATERIALES

Apoyo a las materias fundamentales de metalurgia para diseAar, simular, controlar, modificar y optimizar diferentes procesos metalúrgicos.

INGENIERIA QUIMICA

Proporciona las herramientas indispensables para investigar, diseAar, controlar y optimizar los procesos.

INGENIERIA EN SISTEMAS COMPUTACIONALES

Aplicar el cálculo vectorial en la solución de problemas y actividades que impliquen la optimización de sistemas, diseAo y evaluación de proyectos.

4. OBJETIVO (S) GENERAL (ES) DEL CURSO

Adquirirá los conocimientos del Cálculo Vectorial, cubriendo el cálculo de varias variables y haciendo énfasis en la interpretación física y aplicaciones de los teoremas fundamentales de esta disciplina.

5. TEMARIO

NUM.	TEMAS	SUBTEMAS
I	Vectores y Superficies	1.1 Coordenadas rectangulares tridimensionales, vectores en tres dimensiones 1.2 Magnitud de un vector y cosenos directores 1.3 Operaciones con vectores (producto de un escalar con un vector, suma o resultante, resta de vectores) 1.4 Producto escalar y vectorial 1.5 Productos triples (escalar y vectorial) 1.6 Ecuaciones de rectas y planos 1.7 Cilindros y superficies de revolución, superficies cuadráticas 1.8 Coordenadas esféricas y cilindricas
II	Funciones Vectoriales de Varia- ble Real	 Curvas planas y ecuaciones paramétricas Funciones vectoriales de variable real, dominio y graficación

5. TEMARIO (Continuación)

NUM.	TEMAS	S U B T E M A S
		Derivación e integración de funciones vectoriales de variable real Vectores unitarios, tangencial normal y binormal, longitud de arco y curvatura Sovimiento de una partícula en el espacio. Posición, velocidad y aceleración, (componentes tangencial y normal de la aceleración)
III	Funciones de Varias Variables Independientes	3.1 Definición de función de varias variables independientes 3.2 Límites y continuidad 3.3 Derivada parcial, interpretación geométrica 3.4 Diferencial, incrementos y regla de la cadena 3.5 Derivada direccional 3.6 Gradiente, divergencia y rotacional 3.7 Aplicaciones geométricas, físicas y químicas
IV	Integrales Múltiples	 4.1 Integrales dobles y cálculo de áreas planas, volúmenes, centros de masa y momentos de inercia mediante integración doble 4.2 Integración doble en coordenadas polares 4.3 Integración triple. Aplicaciones de la integral triple 4.4 Integración en coordenadas cilindricas y esféricas 4.5 Area de una superficie de geometría conocida
V	Campos Vectoriales y Aplicaciones	5.1 Campos escalares y vectoriales 5.2 Integral de linea e independencia de las trayectorias 5.3 Teorema de Green 5.4 Integrales de superficie 5.5 Teorema de la divergencia de Gauss 5.6 Teorema de Stokes

6. APRENDIZAJES REQUERIDOS

INGENIERIA BIOQUIMICA Geometría analítica Algebra Cálculo diferencial

INGENIERIA CIVIL

Cálculo diferencial e integral

INGENIERIA ELECTRICA Algebra lineal

INGENIERIA ELECTROMECANICA Cálculo diferencial e integral

INGENIERIA ELECTRONICA Algebra Trigonometría Geometría Cálculo integral

INGENIERIA EN GEOCIENCIAS Derivación de funciones reales Integración de funciones reales

INGENIERIA INDUSTRIAL Números reales y desigualdades Funciones de una y varias variables Límites y continuidad Derivada de funciones de una y varias variables

INGENIERIA MECANICA Derivación de funciones reales Integración de funciones reales

INGENIERIA EN MATERIALES Cálculo diferencial e integral

INGENIERIA QUIMICA Cálculo diferencial e integral

INGENIERIA EN SISTEMAS COMPUTACIONALES Cálculo diferencial e integral Geometría euclidiana Geometría analítica Geometría en el espacio

7. SUGERENCIAS DIDACTICAS

- Proporcionar al estudiante más habilidad en la resolución de problemas y capacidad de análisis en la colección y organización de datos, así como la estimación de los resultados que se presentan en el estudio del cálculo vectorial.
- Los contenidos de las lecciones se deben de organizar de manera que ofrezcan suficiente oportunidad para el razonamiento y la reflexión, buscando eficientemente problemas aplicativos a situaciones de actualidad.
- Apoyarse en fenómenos físicos que permitan comprender el concepto de vectores y funciones de varias variables.
- Utilización de paquetería para la representación de superficies.
- Hacer énfasis en el análisis parcial de una función de varias variables.
- Es recomendable utilizar un libro de texto y una amplia bibliografía de consulta actualizada que permita el enriquecimiento de los conceptos.
- Establecer estrategias que permitan el estudio del cálculo vectorial con el nivel requerido.

8. S U G E R E N C I A S D E E V A L U A C I O N

- Examen escrito.
- Trabajos extraclase (problemarios).
- Trabajos que impliquen la utilización de paquetería.
- Participación activa del estudiante en el enriquecimiento del contenido programático.

NOTA: Los dos puntos anteriores deberán ser elaborados y/o enriquecidos por la Academia en conjunto con el Departamento de Desarrollo Académico.

NUMERO DE UNIDAD: I

NOMBRE DE LA UNIDAD: VECTORES Y SUPERFICIES

OBJETIVO EDUCACIONAL	ACTIVIDADES DE APRENDIZAJE	BIBLIOGRAFIA
fundamentales con los - vectores. Caracterizará analítica mente y geométricamente,- rectas, planos y superfi-	1.2 Resolver operaciones de suma, resta y multiplicación por un escalar. Efectuar operaciones gráficamente 1.3 Resolver e interpretar problemas que involucren el concepto de paralelismo de vectores, vectores unitarios, dependencia e independencia de vectores	2 3 4 5
dráticas y cilíndricas.	1.5 Definir el producto escalar y el producto vectorial de vectores 1.5 Definir e interpretar geométrica y fisicamente problemas sobre el producto escalar y vectorial 1.6 Utilizar paquetes de software, por ejemplo MathCad y Mathematica como herramienta para la graficación	9 10 11 12

NUMERO DE UNIDAD: II

NOMBRE DE LA UNIDAD: FUNCIONES VECTORIALES DE VARIABLE REAL

OBJETIVO EDUCACIONAL	ACTIVIDADES DE APRENDIZAJE	BIBLIOGRAFIA
Definirá los conceptos de derivación e integración vectorial y su aplicación a problemas físicos y geométricos.	ecuaciones paramétricas, traza de las ecuaciones paramétricas de	1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

NUMERO DE UNIDAD: III

NOMBRE DE LA UNIDAD: FUNCIONES DE VARIAS VARIABLES INDEPENDIENTES

OBJETIVO EDUCACIONAL	ACTIVIDADES DE APRENDIZAJE	BIBLIOGRAFIA
Definirá e interpretará	3.1 Elaborar una síntesis sobre límites y continuidad de funciones	
los conceptos del cálculo	reales de varias variables y sus gráficas	1
diferencial parcial de	3.2 Definir y calcular las derivadas parciales de una función real	2
las funciones reales de	3.3 Definir y calcular la derivada direccional, vector gradiente de	3
varias variables y los a-	una función real y dar su interpretación geométrica, calcular la	4
plicará en la solución de	ecuación del plano tangente y normal	5
problemas de ingeniería.	3.4 Enunciar el Teorema de la Regla de la Cadena y calcular la deri-	6
	vada de función real	7
	3.5 Enunciar las condiciones para que una función esté definida im-	8
	plícitamente y resolver problemas sobre dichas funciones	9
	3.6 Aplicar la derivada parcial para la optimización de sistemas	10
	3.7 Uso de paquetes de software; mathcad y mathematica, como herra-	11
	mientas para solución y graficación	12

NUMERO DE UNIDAD: IV

NOMBRE DE LA UNIDAD: INTEGRALES MULTIPLES

OBJETIVO EDUCACIONAL	ACTIVIDADES DE APRENDIZAJE	BIBLIOGRAFIA
Generalizará el concepto de integral del cálculo - de una variable, al de - varias variables.	 4.1 Definir la integral doble y calcular el área como aplicación de ésta e interpretar geométricamente 4.2 Definir la integral triple y enunciar sus propiedades. Resolver ejercicios e interpretar geométricamente 4.3 Representar las funciones en coordenadas esféricas y cilíndricas 	1, 2, 3, 4, 5, 6, 7, 8,
Realizará transformacio nes de coordenadas rec-	4.4 Realizar gráficas de funciones en coordenadas esféricas y cilíndricas	9, 10, 11, 12

tangulares, cilíndricas y 4.5 Realizar transformaciones de funciones de un sistema a otro esféricas.

NUMERO DE UNIDAD:

NOMBRE DE LA UNIDAD: CAMPOS VECTORIALES Y APLICACIONES

OBJETIVO EDUCACIONAL	ACTIVIDADES DE APRENDIZAJE	BIBLIOGRAFIA
Green, Gauss y Stokes a - problemas de aplicación -	5.1 Definir el concepto de campos conservativos 5.2 Determinar las propiedades de los campos conservativos 5.3 Definir e interpretar el teorema de Green en el plano 5.4 Resolver ejercicios aplicando el teorema de Green e interpretar geométricamente 5.5 Definir e intrepretar el teorema de Gauss y resolver ejercicios y dar su interpretar física 5.6 Definir e interpretar el teorema del rotacional de Stokes, resolver ejercicios y dar su interpretación física	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

10. BIBLIOGRAFIA

- 1.- SWOKOWSKI EARL W.
 CALCULO CON GEOMETRIA ANALITICA
 GRUPO EDITORIAL IBEROAMERICA
- 2.- LARSON R. E. Y HOSTETLER R. P. CALCULO Y GEOMETRIA ANALITICA Ed. McGRAW-HILL
- 3.- ZILL DENNIS G.
 CALCULO CON GEOMETRIA ANALITICA
 GRUPO EDITORIAL IBEROAMERICA
- 4.- EDWARDS Jr. C. H. Y PENNEY DAVID E. CALCULO Y GEOMETRIA ANALITICA Ed. PRENTICE-HALL
- 5.- FRALEIGH JOHN B.
 CALCULO CON GEOMETRIA ANALTICA
 Ed. ADDISON-WESLEY IBEROAMERICANA
- 6.- ANTON HOWARD
 CALCULO CON GEOMETRIA ANALITICA
 Ed. WILEY
- 7.- THE VECTOR CALCULUS PROBLEM SOLVER Ed. R.E.A.
- 8.- MARSDEN J. E. Y TROMBA A. J.
 CALCULO VECTORIAL
 Ed. ADDISON-WESLEY IBEROAMERICANA
- 9.- LEITHOLD LOUIS CALCULO CON GEOMETRIA ANALITICA Ed. HARLA
- 10.- HAASER/LOSALLE/SULLIVAN
 CALCULO CON GEOMETRIA ANALITICA
 Ed. TRILLAS
- 11.- MATHCAD (PAQUETE DE SOFTWARE)
- 12.- MATHEMATICA (PAQUETE DE SOFTWARE)