S. E. P. S. E. I. T.

1. IDENTIFICACION DEL PROGRAMA DESARROLLADO POR UNIDADES DE APRENDIZAJE

NOMBRE DE LA ASIGNATURA: OPERACIONES UNITARIAS II (4-2-10)

NIVEL: LICENCIATURA

CARRERA: INGENIERIA BIOQUIMICA

CLAVE: BQC-9326

2. HISTORIA DEL PROGRAMA

ńzzzzzzzzzzzzzzzzzzzzzzzzz	~ ~ \$ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
OTHERNERSHEE	PARTICIPANTES	3 OBSERVACTONES	į.
3 LUGAR Y FECHA DE	PARTICIPANTES		
3 ELABORACION O REVISION	3	3 (CAMBIOS Y JUSTIFICACION)	,
		AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	3
3 26 al 30 de Marzo de		3 Reuni¢n Nacional de Revisi¢n Curricular de la	3
³ 1990	³ l¢gicos que asistieron a la	3 Carrera de Ingenier;a Bioqu;mica.	3
3 I. T. Tepic	3 Reuni¢n	3	3
3	3	3	3
3 Tijuana B. C.	3 Ing. Jorge E. Duque	3	3
3 Agosto de 1990	3 Landeros	3 Por cambios de ret; cula en base a la reuni¢n	3
3	3	3 celebrada en Marzo de 1990 en Tepic, Navarit.	3
3	3 Ing. Jos, Luis Herrera	3	3
3	3 Culebro	3	3
3	3 Ing. Daniel Gil L¢pez.	3	3
3	3	3	3
3	3	3	3
3 Del 18 al 22 de Febrero	3 Comit, de Consolidaci¢n	3 Validaci¢n y enriquecimiento del programa en	3
3 de 1991	3	3 Reuni¢n de Consolidaci¢n.	3
3 I.T. Veracruz	3	3	3
3	3	3	3
3 Del 6 al 7 de mayo de	3 Comit, de Reforma	3 Validaci¢n del programa en reuni¢n del Comit, de	3
3 1993.	3	3 Reforma.	3
3 I. T. Culiac n	3	3	3
ÀAAAAAAAAAAAAAAAAAAA	******************	242222222222222222222222222222222222222	ří
111111111111111111111111111111111111111		***************************************	,

3. UBICACION DE LA ASIGNATURA

a) RELACION CON OTRAS ASIGNATURAS DEL PLAN DE ESTUDIO

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Äż	ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAA	ςÄ
3 ANTEI	RIORES	3	3 POST	ERI	ORES	3
ĀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Ä´	ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAA	Ä
3 ASIGNATURAS	3 TEMAS	3	3 ASIGNATURAS	3	TEMAS	3
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	Ä´	ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAA	Ä
³ Matem ticas I, II, III	3 - C lculo diferencial e	3	3 Operaciones Unitarias	3 _	Secado	3
3 A IA	3 integral	3	3 A	3 _	· Humidificaci¢n	3
3	3 - An lisis vectorial	3	3	3 _	· Destilaci¢n	3
3	³ - Ecuaciones diferen-	3	3	3		3
3	3 ciales	3	³ Bioingenier;a	3 _	Generaci¢n y	3
³ Balances de Materia y	³ - Balance de materia	3	3	3	transferencia de	3
3 Energ;a	³ - Balance de energ;a	3	3	3	calor en reaccinesS	3
³ Termodin mica	³ - 1a Y 2a Ley	3	3	3	biol¢gicas	3

3	Operaciones Unitarias I	³ - Ecuaci¢n	de movimiento ³	3		3	3
3		3 - Ca;da de	presi¢n 3	3		3	3
3		3	3	3		3	3
λź	****************	***********	1122222222222	àää	*******************	*******************	ΔŤ

b) APORTACION DE LA ASIGNATURA AL PERFIL DEL EGRESADO

Los conocimientos adquiridos, permitir n al egresado dise¤ar y seleccionar equipo para el desarrollo de aquellos procesos industriales en donde se involucre a la transferencia de calor.

4. OBJETIVO (S) GENERAL (ES) DEL CURSO

Al terminar el curso, el alumno aplicar $\,$ los principios fundamentales de la transferencia de calor al dise $\,$ o y/o selecci $\,$ n de equipo que involucre este fen $\,$ meno.

5. TEMARIO

113333333	****************	. * * * * * * * *	: AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
3 NUMERO		3	S U B T E M A S
3 T	³ Transferencia de Calor por Conducci¢n		L Leves fundamentales de la transferencia de calor.
3 ±	riansierencia de caror por conducción	3	1.1.1 Conducción. Ley de Fourier.
3	3	3	Conductividad t, rmica.
3	3	3	1.1.2 Convecci\(\text{ci}\) Ley de Newton de enfriamiento.
3	3	3	Coeficiente de transferencia de calor por con-
3	3	3	vecci¢n.
	3	2	
	2	3	1.1.3 Radiaci¢n. Ley de Stefan-Boltzman. El coefi- 3 ciente de s - b.
	2	3	
	2	3	1.1.4 Ecuaci¢n general de energ;a. Forma diferencial³
	2	3 1 0	y forma integral para balances macroscopicos. ³ ² Conducci¢n unidimensional de calor. ³
	2	3 1.2	
	3	3	1.2.1 Conduccion en paredes rectangulares simples y 3
	2	3	compuestas. (Deduccion del coeficiente global 3
-	3	3	de transferencia de calor).
3	3	3	1.2.2 Conducci¢n en paredes cil;ndricas simples y 3
3	3	3	compuestas. (Sin generaci¢n y con generaci¢n ³
3	3	3 4 0	de calor).
3	3	3 1.3	3 Conducci¢n en varias dimensiones.
3	3	3	1.3.1 Soluci¢n anal;tica.
3	3	3	1.3.2 Soluci¢n gr fica y num, rica.
3	3	3 1.4	1 Conducci¢n en estado inestable.
3	3	3	1.4.1 Placa infinita, cilindro, esfera. 3
3	3	3	1.4.1.1 Soluci¢n Anal;tica. 3
3	3	3	1.4.1.2 M, todo Integral.
3	3	3	, , , , , , , , , , , , , , , , , , , ,
3 II	³ Transferencia de Calor por Convecci¢n	3 2.1	Convecci¢n forzada.
3	3	3	2.1.1 Capa l;mite hidrodin mica y t,rmica. (Solu- 3
3	3	3	ci¢n anal;tica en r,gimen laminar).
3	3	3	2.1.2 An lisis dimensional.
3	3	3	2.1.3 Correlaciones y analog;as
3	3	3 2.2	2 Convecci¢n natural. 3
3	3	3	2.2.1 Convecci¢n natural en un fluido contenido entre³
3	3	3	dos placas.
3	3	3	2.2.2 An lisis dimensional.
3	3	3	2.2.3 Correlaciones y analog;as.
3	3	3	2.2.4 Diferentes tipos de intercambiadores. 3
3	3	3 2.3	3 Transferencia de calor con cambio de fase.
3	3	3	2.3.1 Ebullici¢n. (Correlaciones). 3
3	3	3	2.3.2 Condensaci¢n. (Correlaciones). 3
AÄÄÄÄÄÄÄ	ĨÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAA	ÚAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

TEMARIO (Continuaci¢n)

3 NUMERO 3 TEMAS SUBTEMAS $^{\rm 3}$ 3.1 Equipos de transferencia de calor. $^{\rm 3}$ 3.1.1 Tipos de intercambiadores. III ³ Dise¤o de Intercambiadores de Calor 3.1.1.1 Doble tubo. 3.1.1.2 Placas. 3.1.1.3 Tubo y coraza. 3.1.2 Diferentes arreglos para las corrientes.
3.1.2.1 Contracorriente.
3.1.2.2 Paralelo. 3.1.2.3 Cruzado. 3.1.2.4 Otros. 3.2 Diferencia de temperaturas media logar;tmica. M, todo NTU. 3 3.4 Factores de ensuciamiento. 3 3.5 Disemo de equipo. ³ Dise¤o de Evaporadores y Cristalizadores 3 4.1 Evaporadores. 4.1.1 Equipo de evaporaci¢n. 4.1.2 Evaporadores de simple efecto. 4.1.3 Evaporadores de m£ltiple efecto. 4.1.4 Evaporadores de pel; cula ascendente y descen-. dentes. 4.1.5 Criterios de selecci¢n de evaporadores para materiales biol¢gicos, t,cnicos y econ¢micos. 4.2 Cristalizadores. 4.2.1 Mecanismos de cristalizaci¢n y curvas de solubilidad. 4.2.2 Balance de materia y energ;a para un cristalizador. 4.2.3 Equipos empleados en la cristalización. 4.2.4 Criterio de selección y disemo de cristalizado-

6. APRENDIZAJES REQUERIDOS

- C lculo Diferencial.
- C lculo Integral.
- Ecuaciones Diferenciales Ordinarias Y Parciales.
- Sistemas de Ecuaciones Lineales y No lineales.
- An lisis Vectorial.
- Primera y Segunda Ley de la Termodin mica.
- Propiedades Coligativas de las Soluciones.
- Balances de Materia y Energ;a.

7. SUGERENCIAS DIDACTICAS

- Realizar una investigación documental para la determinación de la conductividad t, rmica en sólidos, l;quidos y gases.
- Realizar una invesigaci¢n experimental de la conductividad t,rmica en un s¢lido.
- Realizar una investigaci¢n documental de la determinaci¢n del coeficiente global de transferencia de calor en paredes rectangulares y cil;ndricas.
- Realizar una investigaci¢n experimental de la determinaci¢n del coeficiente de transferencia de calor por conveccion natural y forzada.

- Realizar talleres de soluci¢n de problemas durante el desarrollo del curso.
- Resolver problemas de disemo de intercambiadores de calor.

8. SUGERENCIAS DE EVALUACION

- Informes de investigaciones documentales y experimentales realizadas.
- Reportes de los problemas resueltos por medio de software.
- Revisi¢n de problemas asignados.
- Reporte de visitas a industrias.
- Reportes de programas desarrollados para la obtención de perfiles de temperatura en estado estable y en estado inestable y para diferentes condiciones frontera.
- Participaci\u00e9n durante el desarrollo del curso.

NOTA: Los dos puntos anteriores deber n ser elaborados y/o enriquecidos por la Academia en conjunto con el Departamento de Desarrollo Acad,mico.

9. UNIDADES DE APRENDIZAJE

NUMERO DE UNIDAD:

ACTIVIDADES DE APRENDIZAJE 3 BIBLIOGRAFIA
(BASICA Y COMPLEMENTARIA) EDUCACIONAL - El alumno conocer ³ 1.1 Identificar los tres fenémenos de trans³ los diferentes mecanis³ ferencia de calor, conocer las leyes ³ mos de transferencia ³ que los rigen y las propiedades de la ³ de calor y las leyes ³ materia que los permiten. ³ mos de transferencia ³ de calor y las leyes ³ que lo rigen, asi como³ la ecuación de energ; a 1.2 Postular el balance de energ; a y, a para que los involucra. 3 tir de ,1, obtener la ecuación diferen-3 cial de energia. Integrar en un vol£men3 1 ley de Fourier y la e-3 de control y obtener el balance macros-3 cuaci¢n de energ;a a 3 c¢pico de energ;a. sistemas en donde la 3 conducci¢n domina la 3 1.3 Identificar lo sistemas en donde la con3 tranferencia de calor.3 ducci¢n de calor es dominante. 3 1.4 Deducir el perfil de temperatura para 3 redes rectangulares y cil;ndricas, sim-3 ples y compuestas en estado estable. 3 1.5 Deducir el perfil de temperatura para sistemas con m s de una dimensi¢n. 3 1.6 Deducir el perfil de temperaturas para sistemas en estado inestable. 3 1.7 Obtener la soluci¢n num, rica para los casos vistos en los puntos 5 y 6. NUMERO DE UNIDAD: II

NOMBRE DE LA UNIDAD: TRANSFERENCIA DE CALOR POR CONVECCION

опининининининини	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	iaaaaaaaaaaaa	AAAAAAAAAAAAAAAAAAAAAAAAA	; ÄÄÄÄÄÄÄÄÄ
3 OBJETIVO	3	ACTIVIDADES DE APRENDIZAJE	3	BIBLIOGRAFIA	3
3 EDUCACIONAL	3		3	(BASICA Y COMPLEMENTARIA) 3
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄ
3 - El alumno ser	capaz 3 2.1	. Identificar los tipos de sistem	nas en ³		3
³ de diferenciar	los sis³	donde se presenta el fen¢meno d	le la con³	1	3
3 mas en donde l	a trans-3	vecci¢n y de cambio de fase.	3		3
³ ferencia de ca	lor por 3		3	2	3
3 convecci\u00f3n, ta	nto na- 3 2.2	Deducir el modelo matem tico pa	ra con- 3		3
3 tural como for	zada, es³	vecci¢n forzada, por medio del	an lisis³	3	3
3 dominante, y l	os des- 3	de la capa l; mite hidrodin mica	v t,r- 3		3
3 criminar de a		mica, en las cercan;as de una p		4	3
³ en donde se pr	esenta ³		3		3
3 el fen¢meno de	cambio 3 2.3	Deducir el modelo matem tico pa	ıra el ca³	5	3
3 de fase.	3	so de la convecci¢n natural en	un flui-3		3
3	3	do contenido entre dos placas.	3	7	3
3 - El alumno conc	cer las³	*	3		3
3 leves v correl	aciones 3 2.4	Desarrollar el an lisis dimensi	onal ge-3		3
		neralizado para sistemas con co			3
3 transferencia		forzada, natural v con cambio c			3
3 por convección		,	3		3
		Conocer las correlaciones exist	ente pa-3		3
		los tres fen¢menos tratados en			3
3 blemas t;picos		dad.	3		3
3 nier;a bioqu;m			3		3
3		Aplicar los conocimientos adqui	ridos a 3		3
3	3	problemas t;picos de Ingenier;a			3
3	3	mica.	11		3
· · · · · · · · · · · · · · · · · · ·					

NUMERO DE UNIDAD: III

NOMBRE DE LA UNIDAD: DISE¥O DE INTERCAMBIADORES DE CALOR

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	1. A A A A A A A A A A A A A A A A A A A	ÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	SÄÄÄÄÄÄÄ.
3 OBJETIVO 3	ACTIVIDADES DE APRENDIZAJE	3	BIBLIOGRAFIA	3
3 EDUCACIONAL 3		3	(BASICA Y COMPLEMENTARIA)	3
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ ′
³ El alumno ser capaz de ³ 3.1	Aplicar los princios b sicos de la	3		3
3 aplicar los conocimientos3	transferencia de calor en el disemo	э у з	1	3
3 de adquiridos, al dise¤o 3	selecci¢n de intercambiadores de ca	alor.³		3
³ y selecci¢n de equipo de ³		3	2	3
3 transferencia de calor. 3 3.2	Aplicar la metodolog;a de Diferenci	ia de³		3
3	Temperaturas Media Logar; tmica y la	a del³	4	3
3	N£mero de Unidades T,rmicas en el o	dise-3		3
3	mo de intercambiadores de calor.	3	5	3
3		3		3
3 3.3	Analizar los factores que pueden se	er la³	6	3
3	causa de inscrutaciones en las pare	edes ³		3
3	del intercambiador.	3	7	3
3		3		3
3 3.4	Analizar los criterios econ¢micos y	y tec³	8	3
3	nol¢gicos que inciden en el dise¤o	de y³		3
3	selecci¢n de equipo.	3		3

NUMERO DE UNIDAD: IV

NOMBRE DE LA UNIDAD: DISE¥O DE EVAPORADORES Y CRISTALIZADORES

ÚÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAA	AAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	; ÄÄÄ
3	OBJETIVO	3	ACTIVIDADES	DE APRENDIZAJE	3	BIBLIOGRAFIA	3
3	EDUCACIONAL	3			3	(BASICA Y COMPLEMENTARIA)	3
ÃÄÄÄÄ	AAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄ´
3 El	alumno aplicar	los ³ 4.1	Identificar los	diferentes tipos	de eva³		3

10. BIBLIOGRAFIA

- WELTY, WICKS Y WILSON FUNDAMENTOS DE TRANSFERENCIA DE MOMENTUM, CALOR Y MASA Ed. LIMUSA
- 2. MANRIQUE JOSE A. TRANSFERENCIA DE CALOR Ed. HARLA
- 3. BIRD, STEWART Y LIGHTFOOT FENOMENOS DE TRANSPORTE Ed. REVERTE
- 4. KREITH FRANK
 PRINCIPIOS DE TRANSFERENCIA DE CALOR
 Ed. HERRERA HNOS. SUCESORES
- 5. GEANKOPLIS CRISTHIE
 PROCESOS DE TRANSPORTE Y OPERACIONES UNITARIAS
 Ed. C.E.C.S.A
- 6. FOUST, WENZEL, CLUMP, MAUS Y ANDERSEN PRINCIPIOS DE OPERACIONES UNITARIAS Ed. C.E.C.S.A.
- 7. HOLMAN J. P.
 TRANSFERENCIA DE CALOR
 Ed. McGRAW-HILL
- 8. McCABE Y SMITH
 OPERACIONES BASICAS DE INGENIERIA QUIMICA
 Ed. REVERTE

11. PRACTICAS PROPUESTAS

- Determinaci $\dot{\mbox{\sc h}}$ de la conductividad t,rmica para s $\dot{\mbox{\sc h}}$ lidos.
- Estimaci \dot{v} n del coeficiente de transferencia de calor por convecci \dot{v} n natural y forzada.
- Estimaci¢n del coeficiente global de transferencia de calor para paredes rectangulares y cil;ndricas.
- Determinaci \dot{c} n del perfil de temperatura a lo largo de una barra met lica.
- Determinaci \hat{v} n de todas las condiciones de flujo y temperatura en los puntos de entrada y salida en un intercambiador de calor.
- Verificaci experimental de las condiciones de flujo y temperatura en un evaporador con respecto a

las de dise¤o.

En este punto se deber $\$ elaborar la gu;a de pr $\$ cticas con base en la metodolog;a oficial emitida por la Subdirección de Docencia (D.G.I.T.) para tal efecto.