1.- DATOS DE LA ASIGNATURA

Nombre de la asignatura: Ingeniería de procesos

Carrera: Ingeniería Bioquímica

Clave de la asignatura: **BQM - 0520**

Horas teoría-horas práctica-créditos 3-2-8

2.- HISTORIA DEL PROGRAMA

Lugar y fecha de elaboración o revisión	Participantes	Observaciones (cambios y justificación)
Instituto Tecnológico de Tuxtepec del 17 al 21 de Enero de 2005	Representantes de las academias de Ingeniería Bioquímica.	Reunión Nacional de Evaluación Curricular de la Carrera de Ingeniería Bioquímica.
Institutos Tecnológicos de Colima, Ecatepec, Irapuato, Tepic, Tuxtepec. Abril del 2005	Academia de Ingeniería Bioquímica.	Análisis y enriquecimiento de las propuestas de los programas diseñados en la reunión nacional de evaluación
Instituto Tecnológico de Tepic del 25 al 29 de abril del 2005	Comité de Consolidación de la carrera de Ingeniería Bioquímica.	Definición de los programas de estudio de la carrera de Ingeniería Bioquímica.

3.- UBICACIÓN DE LA ASIGNATURA

a). Relación con otras asignaturas del plan de estudio

Anteriores		Posteriores		
Temas	•	Asignaturas	Temas	
		Formulación y	Ingeniería	
		Evaluación de	básica del	
		Proyectos	diseño.	
			Selección de	
			equipo.	
			Diseño de	
			planta.	
diferenciales.				
lineales y no lineales				
		Solución de ecuaciones diferenciales. Solución de sistemas de ecuaciones	Temas Asignaturas Formulación y Evaluación de Proyectos Solución de ecuaciones diferenciales. Solución de sistemas de ecuaciones	

b). Aportación de la asignatura al perfil del egresado

 Incorporar los conocimientos adquiridos de simulación, control y optimización para el diseño y selección de equipos y procesos en los que se utilicen de manera sostenible los recursos naturales.

4.- OBJETIVO(S) GENERAL(ES) DEL CURSO

Adquirirá los conocimientos para la simulación, control y optimización de equipos y procesos, que le permitirán trabajar de manera interdisciplinaria y multidisciplinaria en el desarrollo, transferencia y adaptación de tecnología apropiada para el aprovechamiento de los recursos naturales.

5.- TEMARIO

1	Introducción.	1.1	Conceptos.
'	miliodddolon.	' ' '	1.1.1 Ingeniería de procesos.
			1.1.2 Síntesis de procesos.
			1.1.3 Simulación, control y
		40	optimización de procesos.
		1.2	Análisis de Diagrama de Flujo de
			Procesos (DFP) y determinación de
			grados de libertad.
		1.3	Método heurístico.
		1.4	Método evolutivo.
		1.5	Método algorítmico.
		1.6	Análisis de módulos básicos.
2	Modelos matemáticos.	2.1	Terminología de modelos matemáticos
		2.2	Clasificación de modelos matemáticos
			2.2.1 Teóricos.
			2.2.2 Semi-teóricos.
			2.2.3 Empíricos.
		2.3	Modelos matemáticos basados en la
			naturaleza de las ecuaciones.
			2.3.1 Modelos determinísticos y
			probabilísticos.
			2.3.2 Modelos lineales y no lineales.
			2.3.3 Modelos de estado estacionario
			y no estacionario.
			2.3.4 Modelos de parámetros
			globalizados y distribuidos
		2.4	Modelos matemáticos basados en los
			principios de los fenómenos de
			transporte.
			2.4.1 Descripción molecular.
			2.4.2 Descripción microscópica.
			2.4.3 Descripción de gradiente
			múltiple.
			2.4.4 Descripción de gradiente
			máximo.
			2.4.5 Descripción macroscópica.

5.- TEMARIO (Continuación)

3	Simulación.	3.1	Introducción a la simulación.	
		3.2	Criterios de estabilidad.	
		3.3	Determinación de la sensibilidad.	
		3.4	Métodos de convergencia.	
		3.5	Simulación de operaciones de	
			transferencia de materia.	
		3.6	Simulaciones de operaciones de	
			transferencia de energía.	
		3.7	Simulación de reactores químicos.	
		3.8	Programas comerciales de simulación.	
			3.8.1 Introducción al uso de	
			simuladores comerciales:	
			Aspen, Hysim, Superpro,	
			Biopro, MathLab, Simnon,	
			Hysys, entre otros.	
			3.8.2 Aplicación de simuladores	
			comerciales.	
4	Optimización.	4.1	Introducción a la optimización.	
			4.1.1 Características de los	
			problemas de optimización.	
			4.1.2 Ajuste de datos empíricos a	
			funciones.	
			4.1.3 Función objetivo.	
		4.2	Optimización de funciones no	
			restringidas.	
			4.2.1 Métodos numéricos para	
			optimización de funciones.	
			4.2.2 Método de Newton.	
			4.2.3 Método de Semi-Newton	
			(Quasi-Newton).	
			4.2.4 Método de la Secante.	
			4.2.5 Métodos de eliminación de	
		4.2	regiones.	
		4.3	Optimización de funciones multivariables.	
			4.3.1 Métodos Directos.	
			4.3.2 Métodos Indirectos.	
		1 1	4.3.3 Método de Diferencias Finitas.	
		4.4	Aplicaciones de optimización.	

6.- APRENDIZAJES REQUERIDOS

- Conceptos básicos de álgebra lineal.
- Manejo de sistemas de ecuaciones diferenciales.
- Conocimientos de programación.
- Aplicación de métodos numéricos.
- Balances de materia y energía.
- Fenómenos de transporte.
- Transformadas de Laplace.
- Aplicación de las operaciones unitarias.
- Aplicación de biorreactores.
- Aplicación de las bioseparaciones.

7.- SUGERENCIAS DIDÁCTICAS

- Investigación documental sobre: tipos de controladores, simulación y optimización, simuladores comerciales de manera programada durante el curso.
- Realizar talleres para desarrollar un modelo matemático sobre un caso de estudio y desarrollar sistemas sencillos de simulación de procesos.
- Organizar sesiones grupales de análisis y discusión de conceptos.
- Realizar visitas a industrias que utilicen simuladores en sus procesos.
- Utilizar algunos softwares comerciales para simulación, control y optimización.

8.- SUGERENCIAS DE EVALUACIÓN

- Informe de la investigación documental.
- Reporte del modelo del caso de estudio.
- Interpretación de resultados de la aplicación del simulador en el caso de estudio.
- Informe o reporte de la visita industrial.
- Participación individual y de grupo en clases.
- Participación en foros de discusión.
- Exámenes escritos.

9.- UNIDADES DE APRENDIZAJE

UNIDAD 1.- Introducción.

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
El estudiante	 Realizar una investigación 	
conocerá los	documental donde establezca los	
métodos	métodos para el análisis y diseño de	17, 19, 20,
establecidos para el	procesos.	21, 22, 23,
diseño de procesos.	Proponer mediante exposición grupal, imples típicos de procesos para	24, 25 y 26.
Comprenderá la	ejemplos típicos de procesos para cada método empleado investigado.	
forma de establecer	 Determinar los grados de libertad 	
los grados de libertad	para cada uno de los diferentes	
para un proceso	ejemplos de procesos presentados.	
determinado.		

UNIDAD 2.- Modelos matemáticos.

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Clasificará los modelos matemáticos empleados en la ingeniería de procesos. Propondrá ejemplos de modelos matemáticos, basados en la naturaleza de las ecuaciones y en los principios de los fenómenos de transporte. Desarrollará el modelo matemático para cada parte del equipo y el sistema de ecuaciones que resuelven la operación.	 Realizar una investigación documental donde se establezca conceptos y la clasificación de modelos en cualquier campo. Exponer en foros de discusión grupal, la clasificación de modelos matemáticos proponiendo una expresión matemática general para cada caso. Resolver en un taller problemas donde intervengan funciones de transferencia. Desarrollar en un taller, ejemplos típicos de modelos matemáticos y los parámetros de análisis empleados en los principios de los fenómenos de transporte. Establecer en un taller los balances de materia, energía y movimiento para cada modelo matemático propuesto en los principios de los fenómenos de transporte. 	7, 8, 9, 13, 15, 20, 23 y

UNIDAD 3.- Simulación.

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Comprenderá la simulación como el estudio de un sistema o sus partes, mediante la manipulación de su representación matemática. Aplicará simuladores comerciales para la solución de problemas de transferencia de materia, energía y movimiento.	 Conocer a través de una investigación los conceptos y ventajas que presenta la simulación de procesos. Discutir en sesión grupal los conceptos e importancia de la simulación de procesos en la industria. Desarrollar las estrategias necesarias y la solución numérica más idónea en un taller para el modelo matemático propuesto en la simulación de procesos. Seleccionar el método de convergencia adecuado para la solución del modelo matemático propuesto en el caso de estudio y en los ejemplos típicos. Conocer de manera física la aplicación de simuladores de procesos y equipos a través de una visita industrial. Desarrollar talleres en donde se puedan aplicar simuladores comerciales a la solución de modelos matemáticos de procesos y equipos propuestos. 	7, 8, 9, 13 y 15 y 20.

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Conocerá los diferentes métodos de optimización en la modelación y simulación de equipos y procesos.	 Investigar conceptos, importancia y métodos empleados en la optimización de procesos. Discutir en grupo los principales métodos lineales para la optimización de operación de 	4 - 40 00
Aplicará las técnicas de optimización empleadas en donde se maximiza y minimiza la función objetivo.	 equipos y procesos. Aplicar algunas de las técnicas de optimización, obteniendo los valores mínimos de la función objetivo. Proponer ejemplos de optimización de procesos y equipos ya establecidos en la industria. Determinar las condiciones de operación óptimas para un proceso bioquímica. 	

10. FUENTES DE INFORMACIÓN

- 1. Beveridge, S.G. *Optimization: Theory and practice*. Mc Graw Hill International, 1997.
- 2. Biegler L.T., Grossmann I.E. & Westerberg, A.W. *Systematic Methods of Chemical Process Design*. Prentice Hall International Series in the Physical and Chemical Engineering Series. 1997.
- 3. Cerro, R. L., Arri, L. E., Chiovetta, M. G., Pérez, G. Curso *Latinoamericano de Diseño de Proceso por Computadora*. Tomos I y II, Instituto de Desarrollo Tecnológico para la Industria Química, Universidad Nacional del Litoral. 1978.
- 4. Douglas, James M. Conceptual Design of Chemical Processes. Mc Graw Hill. N.Y. 1988.
- 5. Duran, M. A. & Grossmann, I. E. Simultaneous Optimization and Heat Integration of Chemical Processes. AIChE Journal, Vol. 32 pp 123. 1986.
- 6. Edgar, T.F., Himmelblau, D.M & Lasdon, L.S. *Optimization of Chemical Processes* 2nd Edition. McGraw-Hill International Editions Chemical Engineering Series. 2001.
- 7. Fishwick, Paul A. Simulation Model Design and Execution. Prentice Hall. International Series in Industrial and Systems Engineering. 1995.
- 8. Franks Rogers, G.E. *Modeling and Simulation in Chemical Engineering*. Wiley Interscience. 2002.

- 9. Himmelblau, D. M. y Bischoff, K.B. *Análisis y Simulación de Procesos*. Reverté, S.A. España. 1992.
- 10. Jiménez Gutiérrez Arturo. *Diseño de Procesos en ingeniería Química*. Reverté, S.A. España.
- 11. King. C.J., Gantz, D.W. & Barnés, F.J. Systematic Evolutionary Process Synthesis. Ind. Eng. Chem. Process Des. Develop., Vol 11, No. 2. 1972.
- Liu, Y. A., Mcgee, H. A. Jr. and Epperly, W. R. Recent Developments in Chemical Process and Plant Design. John Wiley and Sons. N.Y. 1987.
- 13. Luyben, W. L. *Process Modeling: Simulation and Control for Chemical Engineering.* Mc Graw-Hill, N.Y. USA. 1990.
- Nagdir, V.M. & Liu, Y.A. Studies in Chemical Process Design and Synthesis: Part V: A simple Heuristic Method for Systematic Synthesis if Initial Sequences for Multicomponent Separations AIChE Journal Vol. 29, No. 6 pp 926-934.1983.
- Nicolás J. Scenna. Modelado, Simulación y Optimización de Procesos Químicos.
 Libro electrónico:http://www.modeladoeningenieria.edu.ar/libros/modeinge/modinge f.htm. 1999.
- Perry, R. Manual del Ingeniero Químico (Cap 22). Mac Graw-Hill, N.Y. USA. 1992.
- 17. Peters M. S., Timmerhaus K. D. *Plant Design and Economics for Chemical Engineers*. Mc Graw Hill. N.Y. 1968.
- 18. Reklaitis, G. V., Ravindran, A. Ragsdell, K. M. *Enginnering Optimization. Methods and Applications.* John Wiley & Sons. N. Y. USA. 1983.
- 19. Rousseau, R. W. *Handbook of Separation Process Technology*. John Wiley and Sons. N.Y. USA. 1987.
- 20. Rudd, Dale F. and Watson, Charles C. *Estrategias en Ingeniería de Procesos*. Alhambra. 1986.
- 21. Rudd, Dale F. and Watson, Charles C. *Strategy of Process Engineering*. John Wiley & Sons. N.Y. 1968.
- 22. Seader, W. D. & Lewin J.D. D.R. Product & *Process Design Principles*, 2nd Edition. John Wiley &Sons Inc. USA. 2004.
- 23. Smith, H. Chemical Process Design. Mc Gaw Hill, USA. 1995.
- 24. Turton, R., Bailie, R, Whiting, W & Shaeiwitz, J. *Analysis, Synthesis, and Design of Chemical Processes*. Prentice Hall International Series in the Physical and Chemical Engineering Series. 1998.
- 25. Ulrich, G.D. *Procesos de Ingeniería Química. Diseño y Economía de los procesos de Ingeniería Química.* Nueva Editorial Interamericana. S.A. de C.V. México.
- 26. Vilbrand, F.C., Dryden, Ch. E. *Chemical Engineering Plant Design*. 4th Edition. International Student Edition. Mc Graw Hill Int. Book Co. 1999.

11. PRÁCTICAS

- Desarrollar un modelo matemático de un proceso en estudio.
- Realizar la simulación de un proceso.
- Emplear simuladores comerciales como: MATHLAB, VISIO, SIMNON, HYSIM, ASPEN, HYSYS, SUPERPRO, STORM, WinQSB, LINDO6, PROJECT Y BIOPRO en la solución de modelos matemáticos desarrollados en los talleres.