1.- DATOS DE LA ASIGNATURA

Nombre de la asignatura: Circuitos Eléctricos II

Carrera: Ingeniería Eléctrica

Clave de la asignatura: **ELC-0504**

Horas teoría-horas práctica-créditos: 4-2-10

2.- HISTORIA DEL PROGRAMA

Lugar y fecha de elaboración o revisión	Participantes	Observaciones (cambios y justificación)
Instituto Tecnológico de Morelia, del 31 de mayo al 4 de junio del 2004.	Representante de las academias de ingeniería eléctrica de los Institutos	Reunión nacional de evaluación curricular de la carrera de Ingeniería Eléctrica
	Tecnológicos.	-
Institutos Tecnológicos de Ciudad Guzmán, Orizaba, Saltillo, Tepic y Veracruz, de junio a octubre del 2004.	Academias de Ingeniería Eléctrica	Análisis y enriquecimiento de las propuestas de los programas diseñados en la reunión nacional de evaluación
Instituto Tecnológico de	Comité de consolidación	Definición de los programas
Mérida, del 18 al 22 de octubre del 2004	de la carrera de Ingeniería Eléctrica	de estudio de la carrera de Ingeniería Eléctrica

3.- UBICACION DE LA ASIGNATURA

a). Relación con otras asignaturas del plan de estudio

Anteriores		Posteriores	
Asignaturas	Temas	Asignaturas	Temas
Matemáticas IV	- Matrices y determinantes.	Conversión de la Energía I	
Matemáticas V	- Solución de ecuaciones diferenciales y transformada de Laplace	Conversión de la Energía II	- Máquina sincrónica- Motor sincrónico- Máquinas especiales
Circuitos Eléctricos I		Control I	- Respuesta transitoria de circuitos de primer y segundo orden
		Sistemas Eléctricos de Potencia	

b). Aportación de la asignatura al perfil del egresado

Proporcionar el conocimiento de principios y teoría relativos a elementos de circuitos eléctricos y a la interconexión de dispositivos con el apoyo de herramientas de análisis y simulación.

4.- OBJETIVO(S) GENERALES(ES) DEL CURSO

Conocerá, comprenderá y aplicará los conceptos y leyes fundamentales que se emplean en el análisis en estado permanente de circuitos eléctricos excitados con corriente alterna.

5.- TEMARIO

Unidad	Temas	Subtemas
1	Análisis de redes de	1.1 Características de la onda senoidal: período,
	corriente alterna en	frecuencia, valores instantáneos y máximos.
	estado estacionario.	1.2 Potencia instantánea y media. Valor eficaz de
		voltaje y corriente. Concepto de factor de
		potencia.
		1.3 Representación y operaciones con números complejos.
		1.4 Notación fasorial y conceptos de impedancia y admitancia compleja.
		1.5 Análisis nodal y por mallas de redes
		eléctricas
		1.6 Teorema de superposición.
		1.7 Teorema de reciprocidad.
		1.8 Teoremas de Thévenin, Norton y máxima
		transferencia de potencia.
2	Análisis en el dominio	2.1 Introducción al problema de respuesta en
	de la frecuencia.	frecuencia.
		2.2 Respuesta en frecuencia de circuitos RL, RC y RLC.
		2.3 Diagramas de Bode.
		2.4 Circuitos resonantes serie y paralelo.
		2.5 Gráficas de polos y ceros en el plano s.
		2.6 Tipos de filtros.
3	Redes de dos puertos.	3.1 Parámetros de redes de dos puertos.
	,	3.2 Parámetros z, y, h, T y П.
		3.3 Interconexión de redes de dos puertos
4	Circuitos acoplados	4.1 El fenómeno de la inducción.
	magnéticamente.	4.2 Autoinducción, inducción mutua y
		acoplamiento magnético.
		4.3 Análisis de circuitos con acoplamiento magnético.
		4.4 Circuitos equivalentes.
		4.5 El transformador ideal, marcas de polaridad,
		e impedancias reflejadas.

5.- TEMARIO (Continuación)

Unidad	Temas	Subtemas
5	Circuitos Trifásicos.	5.1 Conexiones delta y estrella.
		Transformaciones.
		5.2 Generación de CA trifásica.
		5.3 Circuitos trifásicos con cargas balanceadas en estrella y delta.
		5.4 Circuitos trifásicos con cargas
		desbalanceadas en estrella y delta.
6	Potencia eléctrica	6.1 Potencia real, reactiva y aparente. Potencia compleja. Triángulo de potencias.
		6.2 Corrección del factor de potencia.
		6.3 Medición de potencia en circuitos trifásicos.
		Método de los dos wattmetros

6.- APRENDIZAJES REQUERIDOS

- Uso de equipo de medición como: Multímetro, Osciloscopio, Wattmetro.
- Leyes de Faraday, Lenz, Ohm, Kirchhoff, Ampere y Biot-Savart
- Números complejos
- Representación matricial de sistemas de ecuaciones y su solución.
- Transformada de Laplace.

7.- SUGERENCIAS DIDÁCTICAS

- Propiciar la investigación bibliográfica sobre los conceptos teóricos de las leyes básicas de la electricidad y establecer discusiones sobre esos temas en la clase.
- Realizar experimentos de laboratorio sobre estas leyes, ya sea con equipo del mismo laboratorio o con prototipos desarrollados por los alumnos.
- Usar paquetes y programas computacionales como apoyo en el análisis de circuitos.
- Utilizar estrategias basadas en la solución de problemas para reforzar los conceptos del análisis de circuitos.
- Realizar talleres de solución de ejercicios numéricos durante el desarrollo del curso.

8.- SUGERENCIAS DE EVALUACIÓN

- Considerar los reportes de investigaciones documentales y experimentales como parte de su evaluación.
- Tomar en cuenta el desarrollo de simulaciones.
- Considerar la participación de los alumnos en clase, promoviendo la comunicación entre alumnos y maestros.
- Revisión de tareas de los problemas asignados en forma grupal o individual.
- Exámenes sobre cada una de las unidades vistas en clase

9.- UNIDADES DE APRENDIZAJE

Unidad 1: Análisis de redes de Corriente Alterna en Estados Esatcionario

Objetivo de Aprendizaje	Actividades de Aprendizaje	Fuentes de Información
El estudiante analizará problemas de circuitos eléctricos excitados con corriente alterna.	 Aplicar la formulación que define el concepto de valor rms a diferentes formas de onda periódicas y discutirá en clase los resultados obtenidos; además discutirá acerca del término valor rms verdadero usado en algunos medidores. Elaborar un breve reporte en donde defina con claridad los términos valor pico, frecuencia y fase aplicado a una expresión tipo senoidal con apoyo de gráficas. Integrar en equipo, los estudiantes expondrán la idea que tienen del concepto de fasor aplicado a una cantidad eléctrica y la transformación matemática que se debe realizar para obtener la correspondiente representación instantánea de dicha cantidad. Exponer en clase la idea de ángulo de fase y defasamiento aplicados a cantidades eléctricas en diagramas fasoriales y en gráficas en el dominio del tiempo. Repasar las operaciones básicas de números complejos. Aplicar las técnicas de nodos, mallas y los teoremas de superposición, reciprocidad, Thevenin y Norton y máxima transferencia de potencia al análisis de circuitos de corriente alterna a una cantidad suficiente de ejercicios provistos por el profesor, tal que aseguren la adquisición de una habilidad necesaria en todo ingeniero electricista. 	Todos

Unidad 2: Análisis en el dominio de la frecuencia.

Objetivo de Aprendizaje	Actividades de Aprendizaje	Fuentes de Información
Comprenderá y aplicará los conceptos de respuesta a la frecuencia y su representación en el plano complejo y en un diagrama de Bode.	 Buscar información acerca de las aplicaciones que tienen las técnicas de respuesta a la frecuencia aplicadas a equipos eléctricos, en relación con los circuitos eléctricos equivalentes que los representan. (filtros, compensación, estimación paramétrica, etc.). El estudiante deberá determinar el diagrama de Bode de diferentes configuraciones de circuitos, manualmente y con ayuda de un software matemático y comparará los resultados. En equipos, discutir acerca de cual es la información que está detrás del diagrama de Bode derivado de la respuesta a la frecuencia, aplicada a un equipo o circuito eléctrico. El estudiante calculará la frecuencia de resonancia de diferentes circuitos eléctricos provistos por el profesor. 	Todos

Unidad 3: Redes de dos puertos.

Objetivo de Aprendizaje	Actividades de Aprendizaje	Fuentes de Información
Determinará o calculará los parámetros z, y, h, T y II de redes eléctricas de dos puertos y aplicar estas representaciones en casos convenientes	 Buscar información acerca de las aplicaciones que tienen estos tipo de representaciones de redes de dos puertos. Aplicar una excitación a un circuito de dos puertos y medir las variables de entrada y salida en las pruebas de circuito abierto y corto circuito para así determinar los parámetros z, y, h, T yII. Verificar estos resultados con los obtenidos mediante el cálculo analítico. 	Todos

Unidad 4: Circuitos acoplados magnéticamente.

Objetivo de Aprendizaje	Actividades de Aprendizaje	Fuentes de Información
Representará circuitos acoplados magnéticamente, mediante circuitos eléctricos.	 Realizar un reporte acerca de la interpretación física que puede darse a cada uno de los elementos del circuito eléctrico equivalente aplicado a circuitos magnéticamente acoplados. Experimentalmente determinar las polaridades en transformadores de dos y tres devanados e interpretar el significado físico de ellas. Resolver problemas de circuitos magnéticamente acoplados, utilizando el equivalente eléctrico respectivo e interpretar resultados. 	Todos

Unidad 5: Circuitos trifásicos.

Objetivo de Aprendizaje	Actividades de Aprendizaje	Fuentes de Información
Analizará y resolverá circuitos trifásicos balanceados y desbalanceados	 Buscar información acerca de la utilización de sistemas eléctricos polifásicos y particularmente acerca de las ventajas de los sistemas trifásicos Resolver problemas de cargas trifásicas en delta y estrella balanceadas proporcionados por el maestro y experimentalmente, en el laboratorio, comprobar los resultados. Resolver problemas de cargas trifásicas en delta y estrella desbalanceadas proporcionados por el maestro y experimentalmente, en el laboratorio, comprobar los resultados. 	Todos

Unidad 6: Potencia Eléctrica

Objetivo de Aprendizaje	Actividades de Aprendizaje	Fuentes de Información
Aplicará e interpretará los conceptos de potencia eléctrica en redes.	 Buscar información relacionada con la definición y medición de potencias activa, reactiva y aparente. El alumno debe resolver problemas en donde obtenga el triángulo de potencias de circuitos monofásicos o trifásicos y posteriormente debe comprobar sus resultados experimentalmente. Buscar información relacionada con la corrección del factor de potencia y su aplicación en la industria y establecer una mesa de discusión para ahondar sobre el tema. Medir en el laboratorio la potencia eléctrica en circuitos trifásicos y verificar resultados usando diferentes configuraciones de medición. 	Todos

10.- BIBLIOGRAFIA

- 1. Edminister, Serie Schaum's. Circuitos Eléctricos, Ed. McGraw Hill, Inc.
- 2. Rusell M. Kerchner y George F. Corcovan, *Circuitos de Corriente Alterna*, Ed. CECSA
- 3. Charles K. Alexander & Matthew N. O. Sadiku, *Fundamentos de Circuitos Eléctricos*, Ed. Mc Graw Hill. 1ª edición. 2002
- 4. Williams H. Hayt & Jack E. Kemmerly. & Steven M. Durban, *Análisis de Circuitos Eléctricos en Ingeniería*, Ed. McGraw Hill, Inc., 6ª. edición, 2003.
- 5. J. David Irwin, *Análisis Básico de Circuitos en Ingeniería*, Ed. Prentice Hall Interamericana. 5ª edición. 1997.
- 6. A. Bruce Carlson, Circuitos, Ed. Thomson, 1a edición, 2001.
- 7. Johnson, Johnson y Scout, *Análisis básico de circuitos eléctricos*, Ed. Prentice Hall.
- 8. Richard C. Dorf, *Introducción a los circuitos eléctricos*, Ed. John Wiley & sons.
- 9. Van Valkenburg, *Análisis de redes*, Ed. Limusa.
- 10. Skilling, Redes eléctricas, Ed. Limusa.

Libro(s) de consulta

Existen un gran número de libros de circuitos eléctricos de los siguientes autores: Balabanian, Nilson, Close, Cuninham, Huelsman, Romanowitz, Sander, Scott, Grodzinzky, Jackson, Ryder, etc.

11.- PRÁCTICAS PROPUESTAS.

- Medición de valores eficaces de voltaje y corriente.
- Corrección de factor de potencia mediante el uso de bancos de capacitares.
- Mediciones de voltajes y corrientes de línea y de fase encontrando las relaciones prácticas entre éstas.
- Medición de potencias trifásicas mediante dos y tres Wattimetros.
- Obtención de los parámetros de redes de dos puertos mediante las pruebas de corto circuito y de circuito abierto.
- Determinación de puntos de polaridad de transformadores monofásicos y trifásicos.
- Interpretación de resultados obtenidos en las simulaciones realizadas mediante el software.