1.- DATOS DE LA ASIGNATURA

Nombre de la asignatura: Control II

Carrera: Ingeniería Electrónica

Clave de la asignatura: ECC-0407

Horas teoría-horas práctica-créditos 4-2-10

2.- HISTORIA DEL PROGRAMA

Lugar y Fecha de Elaboración o Revisión	Participantes	Observaciones (Cambios y Justificación)
Instituto Tecnológico de	Representante de las	Reunión Nacional de
Orizaba, del 25 al 29 de agosto del 2003.	academias de ingeniería electrónica de los	Evaluación Curricular de la Carrera de Ingeniería
agosto del 2000.	Institutos Tecnológicos.	Electrónica.
Institutos Tecnológicos de Chihuahua, Morelia, Tehuacan y Puebla	Academias de Ingeniería Electrónica.	Análisis y enriquecimiento de las propuestas de los programas diseñados en la reunión nacional de evaluación
Instituto Tecnológico de	Comité de consolidación	Definición de los programas
Mexicali, del 23 al 27 de	de la carrera de	de estudio de la carrera de
febrero 2004	Ingeniería Electrónica.	Ingeniería Electrónica.

3.- UBICACIÓN DE LA ASIGNATURA

a). Relación con otras asignaturas del plan de estudio

Anteriores		
Asignaturas	Temas	
Matemáticas V	- Ecuaciones Diferenciales Lineales, Transformada de Laplace.	
Matemáticas IV	- Álgebra Lineal.	
Circuitos Electricos	- Leyes de Ohm, de Kirchhoff y superposición.	
Control I	 Función de transferencia, Estabilidad 	

Posteriores		
Asignaturas	Temas	
Electrónica	- Estabilidad,	
Analógica II	Respuesta a la	
	Frecuencia	
Electrónica	- Estabilidad,	
Analógica III	Respuesta a la	
	Frecuencia	

b). Aportación de la asignatura al perfil del egresado

Analizar y diseñar sistemas de control.

4.- OBJETIVO(S) GENERAL(ES) DEL CURSO

El estudiante analizará y diseñará sistemas de control mediante técnicas convencionales y comprenderá la teoría de control moderno.

5.- TEMARIO

Unidad	Temas	Subtemas
1	Respuesta en Frecuencia	 1.1 Introducción. 1.2 Gráficos de respuesta en frecuencia 1.2.1 Diagramas de Bode 1.2.2 Criterio de estabilidad de Bode: Margen de fase, margen de ganancia. 1.3 Nyquist 1.3.1 Diagramas Polares 1.3.2 Criterio de Estabilidad de
2	Compensación	Nyquist. 2.1 Introducción. 2.2 Tipos de compensadores 2.3 Diseño de compensadores en adelanto de fase 2.3.1 Método del lugar de las raíces. 2.3.2 Método de respuesta en frecuencia.
		 2.4 Diseño de compensadores en atraso de fase 2.4.1 Método del lugar de las raíces 2.4.2 Método de respuesta en frecuencia. 2.5 Diseño de compensadores en atrasoadelanto 2.5.1 Método del lugar de las raíces 2.5.2 Método de respuesta en frecuencia
3	Introducción al Método del Espacio de Estados	 3.1 Definición de conceptos: Ecuaciones de estado Variables de estado Espacio de estado 3.2 Representación de sistemas en forma de variables de estado. 3.3 Función de transferencia a partir de la representación en variables de estado. 3.4 Simulación de sistemas: Observabilidad Controlabilidad Retroalimentación Estabilidad

6.- APRENDIZAJES REQUERIDOS

Aplicación de:

- Ecuaciones diferenciales lineales
- Variable compleja
- Transformada de Laplace
- Función de transferencia
- Leyes de Ohm y Kirchhoff
- Teorema de superposición
- Álgebra Lineal

7.- SUGERENCIAS DIDÁCTICAS

- Propiciar la búsqueda y selección de información de los temas del curso.
- Diseñar mínimo una práctica acorde al número de unidades de aprendizaje para que el alumno las desarrolle en el laboratorio
- solicitar un informe por cada una de las prácticas para su evaluación.
- Fomentar la aplicación de software para la solución de problemas.
- Promover la solución de problemas en forma individual y grupal.
- Promover visitas a diferentes industriales para observar aplicaciones de control.
- Fomentar el habito de leer y traducir artículos en ingles
- Dar seguimiento del anteproyecto.

8.- SUGERENCIAS DE EVALUACIÓN

- Revisar los reportes y actividades realizadas en el laboratorio, de acuerdo un formato previamente establecido¹.
- Considerar la participación en las actividades programadas en la materia:
 - Participación en clases
 - Cumplimiento de tareas y ejercicios
 - Exposición de temas
 - asistencia
 - técnicas didácticas (paneles, conferencias, mesas redondas, entre otras)
 - participación en congresos o concursos académicos
 - Trabajo de investigación
 - o simulación de sistemas de control
 - o reportes de visitas industriales
- Aplicar exámenes escritos considerando que no sea el factor decisivo para la acreditación del curso.
- Revisar el avance del anteproyecto.
- Considerar el desempeño integral del alumno. (participación, examen, trabajos de investigación, prácticas, trabajo en equipo, entre otras)
- Revisar los informes por cada una de las prácticas para su evaluación

9.- UNIDADES DE APRENDIZAJE

Unidad 1: Respuesta en frecuencia

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
El estudiante aplicará el concepto de respuesta en	 Buscar y seleccionar información de conceptos básicos de respuesta en frecuencia. 	
frecuencia para determinar la	 Interpretar los conceptos básicos de respuesta en frecuencia. 	1
estabilidad de sistemas de control.	 Aplicar las técnicas apropiadas para la obtención de la respuesta en frecuencia 	2
	de un sistema de control.Representar gráficamente la respuesta	3
	 en frecuencia de un sistema. Interpretar las gráficas de respuesta en frecuencia de un sistema para determinar la estabilidad. 	4

Unidad 2: Compensación

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Diseñará compensadores para sistemas de control	 Buscar y seleccionar información de conceptos de compensadores. Identificar los tipos de compensadores. Aplicar los métodos de prueba y error del lugar de las raíces y de respuesta en frecuencia para el diseño de compensadores. 	1 2 3 4

Unidad 3: Introducción al método del espacio de estados

Objetivo Educacional	Actividades de Aprendizaje		Fuentes de Información
Representará sistemas en variables	 Representar sistemas en variables estado. 	de	
de estado Determinará su	variables de estado.	en	4
controlabilidad, observabilidad y	 Transformar un sistema en variables estado a función de transferencia. 	de	5
estabilidad.	,	la de	6
	sistemas utilizando un software simulación.	de	

10.- FUENTES DE INFORMACIÓN

- 1. Katsuhiko Ogata, *Ingeniería de Control Moderno*, Ed. Prentice Hall
- 2. R. C. Dorf, Sistemas de Control Moderno, Ed. Adison Wesley
- 3. Benjamín C. Kuo, Sistemas Automáticos de Control, Ed. CECSA
- 4. Eronini, Umez, Eronini, *Dinámica de Sistemas y Control*, Ed. Thomson Learning
- 5. Thomas Kailath, *Linear Systems*, Ed. Prentice Hall, Inc.
- 6. Dolores M. Etter, *Solución de problemas de Ingeniería con MATLAB*, Ed. Prentice Hall. Inc.

11. PRÁCTICAS

- Representación de la respuesta en frecuencia de un sistema lineal en forma matemática, simulada y real.
- Obtención de graficas de Bode de un sistema lineal en forma matemática, simulada y real.
- Obtención de graficas de Nyquist de un sistema lineal en forma matemática y simulada.
- Obtención de un sistema con compensador en adelanto de fase en forma matemática, simulada y real.
- Obtención de un sistema con compensador en atraso de fase en forma matemática, simulada y real.
- Obtención de un sistema con compensador en atraso-adelanto en forma matemática, simulada y real.
- Simulación de sistemas representados en forma de variables de estado obteniendo observabilidad, controlabilidad y estabilidad.