1.- DATOS DE LA ASIGNATURA

Nombre de la asignatura: Electrónica Analógica I

Carrera: Ingeniería Electrónica

Clave de la asignatura: **ECM-0412**

Horas teoría-horas práctica-créditos 3-2-8

2.- HISTORIA DEL PROGRAMA

Lugar y Fecha de Elaboración o Revisión	Participantes	Observaciones (Cambios y Justificación)
Instituto Tecnológico de Orizaba, del 25 al 29 de agosto del 2003.	Representante de las academias de ingeniería electrónica de los Institutos Tecnológicos.	Reunión Nacional de Evaluación Curricular de la Carrera de Ingeniería Electrónica.
Institutos Tecnológicos de Cuautla, Hermosillo, Lázaro Cárdenas, Minatitlán, Orizaba y Tijuana, de Septiembre a Noviembre del 2003	Academias de Ingeniería Electrónica.	Análisis y enriquecimiento de las propuestas de los programas diseñados en la reunión nacional de evaluación
Instituto Tecnológico de Mexicali, del 23 al 27 de febrero 2004	Comité de consolidación de la carrera de Ingeniería Electrónica.	Definición de los programas de estudio de la carrera de Ingeniería Electrónica.

3.- UBICACIÓN DE LA ASIGNATURA

a). Relación con otras asignaturas del plan de estudio

Anteriores		
Asignaturas	Temas	
Física IV		

Posteriores		
Asignaturas	Temas	
Electrónica		
Analógica II		

b). Aportación de la asignatura al perfil del egresado

Desarrollar la habilidad para diseñar, analizar y construir circuitos analógicos basados en diodos y transistores

4.- OBJETIVO(S) GENERAL(ES) DEL CURSO

El estudiante analizará y diseñará circuitos con diodos y con transistores

5.- TEMARIO

Unidad	Temas	Subtemas
1	Circuitos de aplicación con Diodos	1.1 Polarización 1.2 Aplicaciones 1.2.1 Rectificadores 1.2.2 Sujetadores 1.2.3 Dobladores 1.2.4 Reportadores 1.2.5 Reguladores 1.2.6 Otros diodos 1.2.7 Diseño de una fuente regulada.
2	Transistor Bipolar (BJT)	 2.1 Características y parámetros 2.2 Polarización de BJT 2.3 Estabilidad 2.4 Circuitos Reguladores (serie y paralelo)
3	Transistor Unipolar (FET)	 3.1 Características y parámetros 3.2 Polarización de FET 3.3 Tipos de FET (MOSFET, JFET) 3.4 Circuitos Mixtos
4	Amplificadores con Transistores BJT y FET	 4.1 Modelos equivalentes del BJT y FET 4.2 Teorema de Miller 4.3 Análisis en pequeña señal del BJT y FET 4.4 Construcción de amplificador de pequeña señal

6.- APRENDIZAJES REQUERIDOS

- Conocer la física de semiconductores
- Dominio de técnicas de análisis de circuitos eléctricos
- Manejo de equipo básico de medición de señales eléctricas
- Manejo de software de simulación.

7.- SUGERENCIAS DIDÁCTICAS

- Propiciar la búsqueda y selección de información de los temas del curso.
- Diseñar prácticas para que el alumno las desarrolle en el laboratorio y solicitar el informe correspondiente.
- Fomentar la aplicación de software para la solución de problemas.
- Promover la solución de problemas en forma individual y grupal.
- Coordinar la búsqueda y selección documental de temas para la elaboración de anteproyectos.
- Propiciar la realimentación continua de los temas vistos

8.- SUGERENCIAS DE EVALUACIÓN

- Revisar los reportes y actividades realizadas en el laboratorio, de acuerdo a un formato previamente establecido¹.
- Considerar la participación en las actividades programadas en la materia:
 - o Participación en clases
 - Cumplimiento de tareas y ejercicios
 - Exposición de temas
 - o asistencia
 - o paneles
 - o participación en congresos o concursos
- Aplicar exámenes escritos considerando que no sea el factor decisivo para la acreditación del curso.
- Revisar el desarrollo de los anteproyectos.
- Considerar el desempeño integral del alumno

9.- UNIDADES DE APRENDIZAJE

Unidad 1: Circuitos de aplicación con Diodos

Objetivo educacional	Actividades de aprendizaje	Fuentes de Información
El estudiante diseñará circuitos con diodos.	 Realizar ejercicios de polarización de diodos y analizar las formas de onda de entrada y de salida con osciloscopio. Medir los niveles de corriente y voltaje en puntos de prueba del circuito. Realizar análisis y cálculos de circuitos rectificadores, sujetadores, dobladores, recortadores y reguladores. Realizar análisis de la señales de entrada y de salida con ejemplos teóricos y hacer la comprobación práctica con circuitos en el laboratorio. 	3 4 5
	 Diseñar y construir una fuente de voltaje regulado. 	

Unidad 2: Transistor Bipolar (BJT)

Objetivo educacional	Actividades de aprendizaje	Fuentes de Información
Diseñará circuitos de polarización con transistores BJT.	 Utilizar fuentes de información técnica de los transistores BJT. Realizar cálculos para obtener los parámetros necesarios en los circuitos de polarización. 	3
	 Graficar rectas de carga de los circuitos de polarización y ubicar el punto de operación. 	4
	 Construir circuitos de polarización en el laboratorio Comparar datos teóricos con experimentales y obtener conclusiones. 	5

Unidad 3: Transistor Unipolar (FET)

Objetivo educacional	Actividades de aprendizaje	Fuentes de Información
Diseñará circuitos de polarización con transistores FET	 Utilizar fuentes de información técnica de los transistores FET. Realizar cálculos para obtener los parámetros necesarios en los circuitos de polarización. Determinar punto de operación. Construir circuitos de polarización en el laboratorio Comparar datos teóricos con experimentales y obtener conclusiones. 	2

Unidad 4: Amplificadores con Transistores BJT y FET

Objetivo educacional	Actividades de aprendizaje	Fuentes de Información
Analizará y diseñará	Utilizar fuentes de información técnica	1
circuitos	de los transistores BJT y FET.	2
amplificadores con	Diseñar y construir circuitos	3
transistores BJT y	amplificadores de pequeña señal	4
FET.	utilizando transistores BJT y FET	5

10.- FUENTES DE INFORMACIÓN

- 1 Schilling & Belove, Circuitos Electrónicos, Ed. Mc Graw Hill
- 2 Sedra, Dispositivos Electrónicos y Amplificadores de Señales, Ed. Interamericana
- 3 Robert Boylestad &Louis Nashelsky, Electrónica teoría de circuitos, Ed. Prentice Hall
- 4 Paul Malvino, *Principios de electrónica*, Ed. Mc Graw Hill
- 5 Savant, Roden y Carpenter, *Diseño electrónico*, Ed. Adison-Wesley Iberoamericana.

11.- PRÁCTICAS

- Construcción de Circuitos Rectificadores.
- Construcción de Circuitos recortadores y sujetadores de señales.
- Construcción de Circuito doblador de tensión.
- Construcción de una fuente regulada de voltaje.
- Construcción de circuitos de polarización con transistores BJT.
- Construcción de circuitos de polarización con transistores FET.
- Construcción de Circuitos amplificadores de pequeña señal.