1.- DATOS DE LA ASIGNATURA

Nombre de la asignatura: Investigación de operaciones I

Carrera: Ingeniería Industrial

Clave de la asignatura: INB - 0406

Horas teoría-horas práctica-créditos 4 - 0 - 8

2.- HISTORIA DEL PROGRAMA

Lugar y fecha de elaboración o revisión	Participantes	Observaciones (cambios y justificación)	
Instituto Tecnológico de Celaya del 11 al 15 agosto 2003.	Representante de las academias de ingeniería industrial de los Institutos Tecnológicos.	Evaluación Curricular de la Carrera de Ingeniería	
Instituto Tecnológico de La Piedad 2 de abril del 2004	Academia de Ingeniería Industrial.,	Análisis y enriquecimiento de las propuestas de los programas diseñados en la reunión nacional de evaluación	
Instituto Tecnológico de La Laguna del 26 al 30 abril 2004	Comité de Consolidación de la carrera de Ingeniería Industrial.	estudio de la carrera de	

3.- UBICACIÓN DE LA ASIGNATURA

a). Relación con otras asignaturas del plan de estudio

Anteriores					
Asignaturas	Temas				
Matemáticas IV	Sistemas de ecuaciones lineales				
	Matrices y determinantes				
	Vectores en el plano				

Posteriores				
Asignaturas	Temas			
Investigación de	Programación			
Operaciones II	Dinámica			

b). Aportación de la asignatura al perfil del egresado

- Diseña e implementa sistemas y procedimientos para la toma de decisiones en la optimización de recursos.
- Aplica técnicas para la medición y evaluación de la productividad en las organizaciones.

4.- OBJETIVO(S) GENERAL(ES) DEL CURSO

- Formulará y aplicará modelos lineales a situaciones reales
- Identificará las posibilidades de cambios en sus sistemas productivos con base a análisis de sensibilidad.
- Optimizará los recursos empleados en la organización usando las técnicas de programación lineal (P.L.) y Ente

5.- TEMARIO

Unidad	Temas			Subtemas
1	Metodología de	la	1.1	Definición, desarrollo y tipos de
	investigación	de		modelos de la Investigación de
	operaciones(I.O)	у		Operaciones(I.O).
	formulación de modelos		1.2	Fases de estudio de la Investigación
				de operaciones.
			1.3	Principales aplicaciones de la
				investigación de operaciones.
			1.4	Formulación de problemas lineales.
			1.5	Formulación de problemas mas
				comunes. Por ejemplo: Dieta,
				Inversión, Transporte, Mezcla,
				Recorte, Asignación, Reemplazo,

			Ruta mas corta.	
2	El método Simplex	2.1	Solución grafica de un problema	
			lineal.	
		2.2	Teoría del método Simplex.	
		2.3	Forma tabular del método Simplex.	
		2.4	El método de las dos fases.	
		2.5	El método Simplex revisado.	
		2.6	Casos especiales	
3	Teoría de la dualidad y		Formulación del problema dual.	
	Análisis de sensibilidad	3.2	Relación primal-dual.	
		3.3	Interpretación económica del dual.	
		3.4	Condiciones Khun-Tucker	
		3.5	Dual-Simplex.	
		3.6	Cambios en el vector costos Cj. A)	
			cuando Xj de Cj es básica, B) cuando	
			Xj de Cj es no básica.	
		3.7	Cambio en los Bi de las restricciones.	
		3.8	Cambio en los coeficientes a(i,j). A)	
			cuando Xj de a(i,j) es básica, b)	
		2.0	cuando Xj de a(i,j) es no básica.	
		3.9	Adición de una nueva variable.	
4	Transporte y asignación	3.10 4.1.	Adición de una nueva restricción.	
4	Transporte y asignación	4.2.	•	
		4.3.		
		4.4.		
		4.5.		
			asignación.	
		4.6.	El método húngaro.	
5	Programación entera	5.1	Introducción y casos de aplicación	
		5.2	Definición y modelo s de	
			programación entera.	
		5.3	Método de Ramificar y acotar	
		5.4	Método de planos cortantes.	
		5.5	Algoritmo aditivo de Balas	

6.- APRENDIZAJES REQUERIDOS

- Conocimientos de:
 - o Vectores en el espacio bidimensional
 - Álgebra matricial.
 - o Resolución de sistemas de ecuaciones por el método de Gauss-Jordán.

7.- SUGERENCIAS DIDÁCTICAS

- Investigar los orígenes y naturaleza de la investigación de operaciones para conocer el estado del arte.
- Investigar la aplicación de la investigación de operaciones en la vida real y analizar las mismas en clase.
- Realizar investigación de campo para formular y aplicar modelos de programación lineal y entera a problemas reales.
- Discutir en grupo la importancia del análisis de sensibilidad sobre los modelos de programación lineal implementados.

8.- SUGERENCIAS DE EVALUACIÓN

- Informes y contenido de investigaciones documentales y de campo realizadas.
- Programas desarrollados en la implementación y solución de modelos de programación lineal.
- Solución de problemas asignados.
- Participación durante el desarrollo del curso.
- Examen escrito.

9.- UNIDADES DE APRENDIZAJE

Unidad: 1 Metodología de la investigación de operaciones y formulación de modelos

Objetivo Educacional		Actividades de Aprendizaje	Fuentes de Información
Conocerá y aplicará la metodología de la I.O. y la formulación de modelos de P.L.		Definir y desarrollar las fases de estudio de la I.O. Analizar las principales aplicaciones de la I.O.	1,2,3,4, 5,6 Y 7
	•	Analizar y formular modelos de P.L.	

Unidad: 2 El método simplex.

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Analizará fundamentos de la P.L. y el procedimiento grafico de solución.	 Resolver problemas de P.L utilizando el y conocer sus procedimiento grafico, así como sus limitaciones. Resolver problemas de P.L., utilizando el método Simplex. 	1,2,3,4, 5,6 Y 7

Analizará en forma detallado del procedimiento del	•	Resolverr problemas de P.L. que requieren la introducción de variables artificiales.	
método Simplex.	•	Conocer los fundamentos del método simplex revisado y resolver problemas de P.L.	
	•	Usar software en la computadora para resolver problemas de P.L.	

Unidad: 3 Teoría de la dualidad y análisis de sensibilidad

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Conocerá y aplicará el concepto fundamental de la dualidad y la relación matemática con el problema primal. Conocerá y aplicará la metodología del análisis de	 Obtener el problema dual a partir del problema primal. Establecer la relación primal-dual. Explicar la interpretación económica del dual. Analizar el procedimiento de la solución Simplex-dual Analizar el efecto de cambio en el vector costos tanto para variables básicas como para variables no básicas. 	1,2,3, 4, 5,6 Y 7
sensibilidad para determinar el efecto que tienen los cambios realizados en el modelo de P.L., considerando los diferentes parámetros sobre la solución optima obtenida.	 Analizar los cambios en la limitación de las restricciones. Analizar los cambios en los coeficientes tecnológicos. Analizar el efecto de la introducción de una nueva variable. Analizar el efecto de la introducción de una nueva variable. Resolver problemas de P.L., haciendo análisis de sensibilidad empleando software con computadora. 	

Unidad: 4 Transporte y asignación

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Establecerá los problemas de transporte y asignación como una variable del modelo de P.L. Aprenderá y aplicará la metodología de solución de los mismos.	 Analizar y establecer modelos de transporte. Obtener la solución inicial de los modelos de transporte utilizando la metodología existente. Obtener la solución mejorada del problema de transporte utilizando los procedimientos de optimización. Analizar y establecer modelos de asignación. Resolver el problema de asignación utilizando el método húngaro. 	1,2,3, 4, 5,6 Y 7

Unidad: 5 Programación lineal entera

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Identificará y resolverá problemas de programación lineal entera. (P.E.).	 Analizar y establecer modelos de programación entera Aplicar los algoritmos de P.E en la solución de problemas para la toma de decisiones. Resolver problemas de P.E. haciendo uso de software 	1,2,3, 4, 5,6 Y 7

10. FUENTES DE INFORMACIÓN

- 1. Hamdy, Taha. *Investigación de Operaciones*, Editorial: Representaciones y servicios de Ingeniería. 6ª Edición.
- 2. Winston. Investigación de Operaciones, Editorial Iberoamericana.
- 3. Moskowitz, Herbert., Wright Gordon. *Investigación de Operaciones*, Editorial Prentice Hall.
- 4. Davis y Mckeown. *Métodos cuantitativos para administración,* Editorial Mc Graw Hill.
- 5. Hillier y Lieberman. *Introducción a la Investigación de Operaciones*, Editorial Mc Graw Hill. 5ª Edición.
- 6. Thierauf. Investigación de Operaciones, Editorial Limusa.

- 7. Prawda, Juan. *Métodos y Modelos de la Investigación de Operaciones (Tomo 1y II)*, Editorial Limusa.
- 8. Bronson, Richard. *Investigación de Operaciones: Serie Shaum,* Editorial McGraw Hill.
- 9. Gallagher y Watson. *Métodos cuantitativos para la toma de decisiones en administración*. Editorial Mc Graw Hill.
- 10. Shamblin, James E. Investigación de Operaciones, . Editorial Mc Graw Hill.

11. PRÁCTICAS PROPUESTAS

- Realizar aplicaciones de cada una de las técnicas de P.L:. cubiertas en la materia, en las cuales Identifique, formule, y aplique la técnica e interprete su resultado.
- Aplique el software para la solución de la técnica aplicada.
- Utilice software para la comprobación de los resultados obtenidos en la solución manual las técnicas de los problemas asignados.