1.- DATOS DE LA ASIGNATURA

Nombre de la asignatura: Física I

Carrera: Ingeniería Mecánica

Clave de la asignatura: MCT- 0512

Horas teoría-horas práctica-créditos 2 – 3 – 7

2.- HISTORIA DEL PROGRAMA

Lugar y fecha de elaboración o revisión	Participantes	Observaciones (cambios y justificación)	
Instituto Tecnológico de Culiacán, del 14 al 18 de junio de 2004.	Representantes de las academias de Ingeniería Mecánica de los Institutos Tecnológicos.	Reunión Nacional de Evaluación Curricular de la carrera de Ingeniería Mecánica	
Instituto Tecnológico de Cd. Guzmán, Morelia, Pachuca y Puebla	Academia de Ingeniería Mecánica	Análisis y enriquecimiento de las propuestas de los programas diseñados en la reunión nacional de evaluación	
Instituto Tecnológico de Pachuca del 8 al 12 de noviembre de 2004.	Comité de Consolidación de la carrera de Ingeniería Mecánica.	Definición de los programas de estudio de la carrera de Ingeniería Mecánica .	

3.- UBICACIÓN DE LA ASIGNATURA

a). Relación con otras asignaturas del plan de estudio

Anteriores		
Asignaturas	Temas	
Matemáticas I	Derivadas	
Matemáticas II	Integrales	
Matemáticas III	Vectores	

Posteriores		
Asignaturas	Temas	
Física II	Cinemática de partículas y de cuerpo rígido	
	Cinética de partículas y de cuerpo rígido	
Física III	Electrostática	
Mecánica de Materiales I	Esfuerzos Deformaciones Vigas Torsión Métodos energéticos	
Mecánica de Fluidos	Hidrodinámica	

b). Aportación de la asignatura al perfil del egresado

- Formula y evalúa proyectos de diseño, manufactura y mantenimiento de sistemas mecánicos.
- Proporciona la habilidad para el análisis y solución de problemas técnicos relacionados con su área.
- Desarrolla y formula modelos para simular procesos y elaborar prototipos.

4.- OBJETIVO(S) GENERAL(ES) DEL CURSO

Modelará, analizará y resolverá problemas de sistemas en equilibrio.

5.- TEMARIO

1 Equilibrio de la partícula 1.1 Definiciones	
Equilibrio de la particula 1.1 Dell'Illolories	
1.2 Concepto de fuerza	
1.3 Descomposición de fuerzas	en tres
dimensiones	
1.3.1 Con vectores unitarios	
1.3.2 Con cosenos directores	
1.4 Sistemas de fuerzas concurre	entes
1.5 Equilibrio de partículas.	
2 Sistemas equivalentes de 2.1 Clasificación de sistemas de f	uerzas
fuerzas 2.2 Momento de una fuerza	
2.2.1 Respecto a un punto	
2.2.2 Respecto a un eje	
2.3 Par de fuerzas	
2.4 Descomposición de una fuer	za en una
fuerza y un par	
2.5 Reducción de un sistema de f	uerzas
3 Equilibrio del cuerpo rígido 3.1 Diagrama de cuerpo libre	
3.2 Fuerzas de acción y de reacc	ión
3.3 Ecuaciones de equilibrio	
3.4 Aplicaciones bidimensionales	
3.5 Aplicaciones tridimensionales	
	iticamente
indeterminados	
4 Análisis estructural de 4.1 Estructuras	
sistemas mecánicos 4.2 Marcos	
4.3 Máquinas	
5 Centroides, centros de 5.1 Centroides:	
5 Centroides, centros de gravedad y momentos de 5.1 Centroides: 5.1.1 Líneas, áreas y volúme	200
inercia 5.1.2 Centros de masa	163
5.1.2 Certifos de masa 5.1.3 Elementos compuestos	
5.1.3 Elementos compuestos 5.2 Momentos de inercia	
5.2.1 Áreas y volúmenes	
5.2.1 Aleas y volumenes	
5.2.3 Momento polar de inerc	ia
5.3 Teorema de los ejes paralelos	
6 Fricción estática 6.1 Introducción	
6.2 Fricción seca	
6.3 Leyes de fricción	
6.4 Coeficientes y ángulos de fric	ción
6.5 Análisis en planos inclinados	0.011

6.- APRENDIZAJES REQUERIDOS

- Derivadas.
- Integrales definidas.
- Vectores.
- Conceptos de programación.
- Dibujo a Mano Alzada.

7.- SUGERENCIAS DIDÁCTICAS

- Trabajo en equipo para la solución de ejercicios.
- Involucrar al alumno en el desarrollo del curso.
- Promover la investigación.
- Formar equipos de trabajo para realizar investigación documental y electrónica de los temas relacionados con la asignatura.
- Participación en actividades académicas como conferencias, seminarios, mesas redondas, congresos y concursos relacionados con la estática.
- Propiciar el uso de la computadora como herramienta para la investigación, el modelado y resolución de problemas.
- Utilizar equipos y modelos didácticos para demostrar y verificar conceptos teóricos.

8.- SUGERENCIAS DE EVALUACIÓN

- Evaluación diagnostica sobre conocimientos previos.
- Evaluación permanente de los contenidos del curso.
- Participación del alumno en trabajo de equipo en la solución de ejercicios prácticos
- Participación individual.
- Trabajos de investigación.
- Exposición en clases.
- Exámenes departamentales

9.- UNIDADES DE APRENDIZAJE

Unidad 1.- Equilibrio de la partícula

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Comprenderá y aplicará los principios de equilibrio de partículas en la solución de ejercicios	 Se definirán los conceptos y principios de la estática. Conocerá y aplicará el Sistema Internacional de Unidades. Calcular las características de una fuerza y sus componentes. Determinar la resultante de sistemas de fuerzas concurrentes coplanares. Establecer el concepto de equilibrio de una partícula en el espacio. Resolverá ejercicios en el aula y extraclase. Organizar talleres de solución de problemas. 	1, 2, 3,4, 5

Unidad 2.- Sistemas equivalentes de fuerzas

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Aplicará los principios de los sistemas equivalentes de fuerzas en la solución de ejercicios	cuerpo rígido, y sus características Definir el principio de transmisibilidad de	1, 2, 3

Unidad 3.- Equilibrio del cuerpo rígido

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Aplicará las teorías y principios de equilibrio del cuerpo rígido en la solución de ejercicios	 Descomponer una fuerza aplicada a un cuerpo rígido en un sistema fuerza-par Calcular las relaciones de un sistema de fuerza par aplicadas a un cuerpo rígido para mantener el equilibrio Analizar y establecer las reacciones en apoyos y conexiones Desarrollar diagramas de cuerpo libre. Resolver problemas de equilibrio en el plano y el espacio 	1, 2, 3,4,5

Unidad 4.- Análisis estructural de sistemas mecánicos

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Resolverá problemas de estructuras marcos y máquinas	 Describir que es una armadura y sus características Explicar el tipo de fuerzas que se presentan en los elementos que constituyen una armadura Desarrollar el método de nodos para el análisis de armaduras Resolver problemas de estructuras mediante el método de nodos. Desarrollar el método de secciones para el análisis de armaduras Resolver problemas de estructuras mediante el método de secciones. Presentar los principios para el análisis de estructuras. Presentar los principios para el análisis de máquinas simples 	1, 2, 3, 5

UNIDAD 5.- Centroides, centros de gravedad y momentos de inercia

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Determinará centroides, momentos de inercia y momento polar de inercia de ejercicios propuestos.	 Definir centroides, centros de masa, y sus aplicaciones Deducir las expresiones para la determinación de los centroides de línea, área, de volumen y de masa Ejercitar a través de problemas la determinación de centroides de elementos compuestos. Determinación de centroides en elementos compuestos. Definir, el concepto de momentos de inercia y deducir las diferentes expresiones para los momentos de inercia, radios de giro y momento polar de inercia. Definir y aplicar el teorema de los ejes paralelos. Resolver ejercicios de cada uno de los temas de la unidad. 	1, 2, 3, 5

Unidad 6.- Fricción Estática

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Aplicará los principios de fricción en problemas de equilibrio de cuerpos	 Participar en una discusión dirigida, enfocada reconocer la importancia de la fricción estática en el funcionamiento de sistemas mecánicos Determinar práctica del coeficiente de fricción entre dos superficies en clase Discutir en grupo y reflexionar sobre los resultados del cálculo del coeficiente de fricción realizado en clase Investigar en Internet y en otros medios de comunicación acerca de los conceptos relacionados con los efectos de fricción estática Solucionar problemas donde se aplique los principios de fricción. 	1,2,3,4

10. FUENTES DE INFORMACIÓN

- 1. Beer, Ferdinand y Johnston, Russell. *Mecánica vectorial para ingeniero*. México: Editorial Mc Graw Hill. 1997. 6ª edición.
- 2. Bedford, Anthony y Fowler, Wallace. *Estática. Mecánica para ingenieros.* México: Editorial Adison Wesley. 2000. 1ª edición.
- 3. Boresi, Arthur y Schmidt, Richard. *Estática ingeniería mecánica*. México: Editorial Thomson Learning. 2001.
- 4. Pytel, Andrew y Kiusalaas, Jaan. *Ingeniería mecánica. estática.* Editorial International Thomson. 1999. 2ª edición.
- 5. Hibbeler, R.C. *Ingeniería Mecánica. Estática*. Editorial Prentice Hall. 1996. 7ª edición
- 6. Singer Ferdinand I. Mecánica para ingenieros, estática. Editorial Harla.

11. PRÁCTICAS PROPUESTAS.

- 1 Equilibrio.
- 2 Propiedades de superficies.
- 3 Maquetas y prototipos.
- 4 Talleres de solución de problemas.