1.- DATOS DE LA ASIGNATURA

Nombre de la asignatura: **Dinámica de sistemas**

Carrera: Ingeniería Mecatrónica

Clave de la asignatura: MTC-0512

Horas teoría-horas práctica-créditos: 4-2-10

2.- HISTORIA DEL PROGRAMA

Lugar y fecha de elaboración o revisión	Participantes	Observaciones (cambios y justificación)
Instituto Tecnológico de Reynosa, del 6 al 10 de diembre del 2004.	Representante de las academias de ingeniería Mecatrónica de los Institutos Tecnológicos.	Reunión nacional de evaluación curricular de la carrera de Ingeniería Mecatrónica
Centro Nacional de Investigación y Desarrollo Tecnológico, de enero a marzo del 2005	Academias de Ingeniería Mecatrónica	Análisis y enriquecimiento de las propuestas de los programas diseñados en la reunión nacional de evaluación
Instituto Tecnológico de del Toluca, del 16 al 20 de mayo del 2005	Comité de consolidación de la carrera de Ingeniería Mecatrónica	Definición de los programas de estudio de la carrera de Ingeniería Mecatrónica

3.- UBICACIÓN DE LA ASIGNATURA

a). Relación con otras asignaturas del plan de estudio

Anteriores		
Asignaturas	Temas	
Matemáticas IV	Transformaciones linealesValores y vectores característicos	
Matemáticas V	- Ecuaciones Diferenciales y Transformada de Laplace	

Posteriores		
Asignaturas	Temas	
Control	- Análisis y diseño de controladores.	
Seminario de Mecatrónica	- Integración entre diseño-proyecto- manufactura de sistemas de ingeniería	

b). Aportación de la asignatura al perfil del egresado

Proporcionar conceptos, teorías y herramientas que le permitan integrar diversas disciplinas de la ingeniería tales como: Eléctrica, Electrónica, Mecánica, Termodinámica y Química, usando herramientas matemáticas y de computación para el modelado y análisis de sistemas dinámicos con una base sólida para hacer frente a los problemas de diseño y construcción de sistemas multidisciplinarios y/o mecatrónicos

4.- OBJETIVO(S) GENERAL(ES) DEL CURSO

Modelará, simulará y analizará sistemas dinámicos de distinta naturaleza, entre los que se incluyen sistemas híbridos y de procesos, mediante diferentes métodos de representación.

5.- TEMARIO

Unidad	Temas	Subtemas		
1	Elementos, sistemas y	1.1	Definición de conceptos de sistemas	
	leyes físicas para modelar		dinámicos.	
	, , , , , , , , , , , , , , , , , , , ,		1.1.1 Modelo matemático, identificación,	
			validación, ciclo de modelado	
			1.1.2 Variables generalizadas: esfuerzo y flujo.	
			1.1.3 Energía, coenergía y potencia	
			1.1.4 Tipos de elementos	
			(almacenadores de esfuerzos, de	
			flujo, disipadores y	
			transformadores)	
			1.1.5 Sistemas lineales y no lineales	
			variantes e invariantes en el	
			tiempo	
			Proceso de modelado y simulación.	
		1.3	Elementos básicos del modelado	
			1.3.1 Con variables generalizadas	
			1.3.2 Sistemas eléctricos y electrónicos.	
			1.3.3 Sistemas mecánicos	
			(Translacionales y rotacionales).	
			1.3.4 Sistemas fluídicos ó hidráulicos.	
			1.3.5 Sistemas térmicos.	
			1.3.6 Sistemas de ingeniería de	
			procesos.	
		1 1	1.3.7 Sistemas híbridos	
		1.4	Analogías entre los componentes de diferentes sistemas.	
			ullerentes sistemas.	

5.- TEMARIO (Continuación)

Unidad	Temas	Subtemas
2	Métodos y obtención de	2.1 Método con ecuaciones Integro-
	Modelos matemáticos	diferenciales.
		2.2 Linealización de un modelo matemático
		no lineal
		2.3 Método con variables de estado.
		2.4 Método con funciones de transferencia.
		2.4.1 Concepto de polos y ceros
		2.4.2 Diagramas de bloques2.4.3 Diagramas de flujos de señales
		2.5 Métodos gráficos para representar
		sistemas.
		2.6 Métodos con enfoque energético.
		2.6.1 Método con variables
		generalizadas.
		2.6.2 Método con gráficos de Bond.
		2.7 Analogías entre sistemas.
3	Análisis y simulación en el	3.1 Tipos de señales de entrada: impulso,
	tiempo de los sistemas	escalón, rampa y parábola
	lineales e invariantes en el	3.2 Respuesta en el tiempo (analítica y
	tiempo	simulación) de sistemas físicos para las diferentes tipos de entrada: impulso,
		escalón, rampa y parábola en transitoria y
		en estado estacionario
		3.2.1 Primer orden.
		3.2.2 Segundo orden
		3.2.3 Orden superior y concepto de polo
		dominante. A nivel de simulación
		3.3 Variables de estado
		3.3.1 Matriz de Transición de estados
		(significado y propiedades)
		3.3.2 Ecuación de transición de estados
		3.3.3 Relación entre las ecuaciones de
		estado y las funciones de transferencia
		3.3.4 Descomposición de funciones de
		transferencia
		3.3.5 Ecuación característica, valores y
		vectores característicos
		3.3.6 Transformaciones de similitud
		 Propiedades invariantes de las
		transformaciones de similitud
		 Formas canónicas (observable,
		controlable y diagonal)

5.- TEMARIO (Continuación)

Unidad	Temas		Subtemas
4	Análisis y simulación en la	4.1	Análisis de Bode
	frecuencia de sistemas		4.1.1 Gráficas de magnitud y fase
	lineales invariantes en		4.1.1.1 Polos y ceros en el origen
	tiempo		4.1.1.2 Polos y ceros de primer
			orden
			4.1.1.3 Polos y ceros de segundo orden
			4.1.1.4 De cualquier función de
			transferencia
			4.1.2 Graficas de Bode representada en
			variable de estados (simulación)

6.- APRENDIZAJES REQUERIDOS

- Ecuaciones diferenciales
- Transformada de Laplace
- Leves físicas
- Transformaciones lineales
- Valores y vectores característicos

7.- SUGERENCIAS DIDÁCTICAS

- Realizar investigación bibliográfica y de artículos técnicos relacionados con cada uno de los temas.
- Exposición de temas por parte del alumno
- Visitas industriales
- Realizar simulaciones con software de aplicación: Matlab, Mathematica, Simnon, entre otros.
- Planteamiento de problemas y solución de ejercicios
- Prácticas de laboratorio
- Tareas

8.- SUGERENCIAS DE EVALUACIÓN

- Considerar:
 - o Ejercicios y problemas en clase.
 - Exposición de temas por parte de los alumnos con apoyo y asesoría del profesor.
- Evaluar el contenido teórico de cada unidad
- Evaluar trabajos de investigación
- Examen por unidad
- Evaluar las prácticas por unidad, considerando los temas que ésta contiene.
- Evaluar las aplicaciones del contenido de la materia.

9.- UNIDADES DE APRENDIZAJE

Unidad 1: Elementos, sistemas y leyes físicas para modelar

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
El estudiante comprenderá los conceptos de base para el modelado y la simulación de sistemas de diferente tipo y energía. Conocerá la descripción de sus elementos, las leyes y las ecuaciones que los rigen. Establecerá las analogías entre los elementos de diferentes tipos de sistemas	 Investigar en distintas fuentes de información sobre los conceptos que se manejan en la dinámica de sistemas físicos, modelado y simulación Establecer dinámicas grupales para discutir los conceptos y generar definiciones. Identificar los elementos básicos del modelado, leyes físicas que describen el comportamiento de los diferentes sistemas mencionados en el temario. Establecer analogías entre los componentes de diferente naturaleza. 	1 2 3 4 5 6 7

Unidad 2: Métodos y obtención de Modelos matemáticos

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Conocerá, desarrollará y aplicará métodos para la representación matemática y gráfica de sistemas. Aprenderá técnicas clásicas y modernas para la síntesis de modelos matemáticos que describen el comportamiento dinámico de sistemas multidisciplinarios.	 Identificar la naturaleza de los sistemas físicos y relacionarlos con los componentes y leyes que los rigen. Establecer el método para modelar sistemas físicos mediante ecuaciones integro-diferenciales. Realizar ejercicios de modelado de diferentes tipos de sistemas físicos Identificar sistemas lineales y no lineales. Investigar y deducir un método para la linealización de un sistema no lineal. Establecer el método para modelar sistemas físicos mediante variables de estados. Establecer los métodos para modelar sistemas físicos mediante funciones de transferencia. Conceptualizar el término polo y cero. Representar modelos matemáticos mediante diagramas de bloques y de flujo de señales. Obtener las funciones de transferencia de sistemas representados mediante diagramas de bloques (álgebra de bloques) y diagramas de flujo de señales (fórmula de Mason). Establecer los métodos para modelar sistemas físicos mediante el enfoque energético. Realizar ejercicios de modelado de diferentes tipos de sistemas físicos con los diferentes métodos ya establecidos. Establecer analogías entre sistemas de diferentes naturaleza. Realizar ejercicios de modelado de sistemas físicos híbridos y mecatrónicos con los diferentes métodos ya establecidos. En dinámicas grupales discutir experiencias y deducir las ventajas y desventajas de los métodos vistos para el modelado de los sistemas físicos. 	1 2 3 4 5 8 9 10 11 12 13 15 16 17 18 19

Unidad 3: Análisis y simulación en el tiempo de los sistemas lineales e invariantes en el tiempo

Objetivo	Actividades de Aprendizaje	Fuentes de
Educacional		Información
Comprenderá y caracterizará el comportamiento dinámico de los sistemas físicos a partir del concepto de respuesta en el tiempo para los diferentes tipos de entrada (escalón, impulso, rampa y parábola)	 Investigar en distintas fuentes la representación matemática de las señales de entradas que se utilizan en el análisis y simulación del comportamiento de los sistemas físicos. En dinámicas grupales identificar las características que tienen las señales de entradas y establecer analogías con alimentaciones reales. Obtener en forma analítica la respuesta en el tiempo de sistemas físicos de primer y segundo orden. Realizar la simulación de la respuesta en el tiempo de sistemas de primer y segundo orden para los diferentes tipos de entradas. Comprobar mediante la implementación de un circuito la respuesta de un sistema de primer y segundo orden. Realizar la simulación de la respuesta en el tiempo de sistemas de orden superior para los diferentes tipos de entradas, así como aplicar el concepto de polo dominante. Investigar y discutir el significado y propiedades de la matriz de transición de estados. Obtener en forma analítica la ecuación de transición de estados. Establecer la relación entre las ecuaciones de estados y las funciones de transferencia. Investigar la descomposición de funciones de transferencia. Investigar y discutir los conceptos de ecuación característica, valores propios y vectores característicos. Investigar las transformaciones de similitud y realizar ejercicios de estas. 	3 4 5 12 13 14 15 16 17 18 19

Unidad 4: Análisis y simulación en la frecuencia de sistemas lineales e invariantes en el tiempo

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Comprenderá y caracterizará el comportamiento dinámico de los sistemas físicos a partir del concepto de respuesta a la frecuencia	 Investigar en distintas fuentes que características poseen las gráficas de Bode, así como sus ventajas y desventajas. Establecer el método para la realización de las gráficas de Bode. Obtener gráficas de Bode, en forma manual y con algún software de simulación (Matlab), de ejemplos y ejercicios de sistemas. Utilizar un software de simulación para obtener las gráficas de Bode a partir de sistemas representados en variables de 	3 4 5 12 13 14 15 16 17 18 19
	estado.	

10. FUENTES DE INFORMACIÓN

- 1. Umez_Eronini E., *Dinámica de sistemas y control.*, International Thomson Editors. (2001)
- 2. Wood y Law, *Modeling and simulation of dynamic systems*, Prentice Hall. (1997)
- 3. Close, Ch. M. y Frederick, D. K., *Modeling and analysis of dynamic systems*. Ed. Houghton Mifflin. 1993.
- 4. Rowell, D. y Wormley, D. N. System dynamics: an introduction, Ed. Prentice-Hall, (1997)
- 5. Shearer, J. L. Y Kulakowski, B. T. *Dynamic modeling and control of engineering systems*,. Ed. Macmillan, (1990)
- 6. Wellstead, P. E. *Introduction to physical system* modeling, Ed. Academic Press, (1979)
- 7. Takahashi, Y,.Rabins, M. J. y Auslander, D. M., *Control and dynamic systems*. Ed. Addison Wesley, (1972)
- 8. Bequette, B. W., *Process Dynamics. Modeling, Analysis, and Simulation,* Prentice Hall PTR, Upper Saddle, New Jersey. (1998)
- 9. Karnopp, D. C., System Dynamics: Modeling and Simulation of Mechatronic Systems, John Wiley, (2000)

- 10. Nakamura, S., *Análisis numérico y visualización gráfica con MATLAB*, Ed. Prentice-Hall.
- 11. Ogata, K., Dinámica de sistemas. Ed. Prentice-Hall. 1987.
- 12. Ogata, K., *Ingeniería de control moderna*. Ed. Pearson Prentice-Hall, (1998)
- 13. Kuo, Benjamin C., Sistemas de Control Automático, Ed. Prentice-Hall, 1996
- 14. Perko, L., *Differential equations and dynamical systems*, Ed. Springer-Verlag, (1991)
- 15. The MathWorks Inc., *MATLAB. Edición de estudiante*, Ed. Prentice-Hall. 1996.
- 16. The MathWorks Inc., *La edición de estudiante de SIMULINK*, Ed. Prentice-Hall. 1998.
- 17. Scilab. A free Scientific Software Package. http://scilabsoft.inria.fr/
- 18. Etter, D. M., Solución de problemas de ingeniería con MATLAB, Ed. Prentice-Hall, (1998)
- 19. Ogata, K. *Problemas de ingeniería de control utilizando MATLAB*. Ed Prentice-Hall, (1999)

11. PRÁCTICAS PROPUESTAS

- Sistema de nivel de líquido. Obtener y comparar la respuesta dinámica de un sistema de nivel de líquido; cuando el sistema es modelado con ecuaciones lineales y también con ecuaciones no lineales. Los modelos y la respuesta deben ser obtenidos tanto en forma experimental como teórica y validados en simulación.
- Modelo con Funciones de transferencia de Sistemas de 1° y 2° orden.
 Obtener la respuesta dinámica tanto en forma experimental como teórica y con simulación de sistemas de 1° y 2° orden para analizar su comportamiento dinámico. La práctica está acotada a circuitos eléctricos del tipo RL, RC y RLC.
- Péndulo invertido. Obtener y comparar la respuesta dinámica de un sistema de péndulo invertido, con el sistema modelado con ecuaciones lineales y no lineales. Los modelos y la respuesta deben ser obtenidos tanto en forma experimental como teórica y validados en simulación (variables de estado, Gráficos de Bond, función de transferencia y diagrama a bloques).
- Motor de CD.
- Servomotor hidráulico.