1.- DATOS DE LA ASIGNATURA

Nombre de la asignatura: Diseño de Elementos Mecánicos

Carrera: Ingeniería Mecatrónica

Clave de la asignatura: MTF-0514

Horas teoría-horas práctica-créditos **2-4–8**

2.- HISTORIA DEL PROGRAMA

Lugar y fecha de elaboración o revisión	Participantes	Observaciones (cambios y justificación)
Instituto Tecnológico de Reynosa, del 6 al 10 de diciembre del 2004.	Representante de las academias de ingeniería Mecatrónica de los Institutos Tecnológicos.	Reunión nacional de evaluación curricular de la carrera de Ingeniería Mecatrónica
Instituto Tecnológico de Apizaco, de enero a abril del 2005.	Academia de Ingeniería Mecatrónica	Análisis y enriquecimiento de las propuestas de los programas diseñados en la reunión nacional de evaluación
Instituto Tecnológico de Toluca, del 16 al 20 de mayo del 2005	Comité de consolidación de la carrera de Ingeniería Mecatrónica	Definición de los programas de estudio de la carrera de Ingeniería Mecatrónica

3.- UBICACIÓN DE LA ASIGNATURA

a). Relación con otras asignaturas del plan de estudio

Anteriores		Posteriores		
Asignaturas	Temas	Asignaturas	Temas	
Estática	-Equilibrio de la partícula y de cuerpo rígido	Análisis de vibraciones	- Balanceo de rotores	
	-Centros de gravedad -Momentos de	Robótica	-Morfología del Robot	
	inercia de área	Seminario de Mecatrónica	-Integración entre diseño-proyecto-	
Ciencia e Ingeniería de los Materiales	Propiedades Mecánicas		manufactura de sistemas de ingeniería	
Mecánica de materiales	-Esfuerzo y deformación - Torsión - Flexión -Esfuerzos combinados			
Mecanismos	-Análisis cinemático de engranes y trenes de engranajes rectos			

b). Aportación de la asignatura al perfil del egresado

Proporcionar los conocimientos generales para el diseño, y selección de elementos mecánicos existentes, utilizados en dispositivos eléctricos, electrónicos y de sistemas computacionales.

4.- OBJETIVO(S) GENERAL(ES) DEL CURSO

Diseñará y seleccionará los diferentes elementos mecánicos que utilizan los dispositivos, eléctricos, electrónicos y de sistemas computacionales

5.- TEMARIO

Unidad	Temas	Subtemas		
1	Teoría de fallas.	1.2 Mo 1.3 Fa 1.4 Fa po 1.5 Te	troducción. odo de fallas. actores de concentración de esfuerzos. actores de concentración de esfuerzos or carga cíclica y fatiga. eorías de falla. 5.1 Teoría del esfuerzo cortante máximo (Tresca o Guest). 5.2 Teoría de la energía de distorsión máxima (Von Mises).	
2	Diseño de tornillos, sujetadores y uniones.	ato 2.2 Pr tue 2.3 Ju 2.4 Ur	ujetadores roscados.(Tornillos y juntas ornilladas) recarga de pernos y selección de la erca. intas de empaquetadura. niones soldadas (análisis de ifuerzosnormas y códigos de diseño).	
3	Engranes.	he 3.2 Es 3.3 No	nálisis de fuerzas en engranes rectos, elicoidales, cónicos y sinfín-corona. efuerzos en dientes. ormas y códigos de diseño. olicaciones de engranes en sistemas.	
4	Selección de elementos.	4. 4. 4. 4.2 Ap ba	pos de cargas y selección: .1.1 Cojinetes1.2 Coples1.3 Poleas y bandas1.4 Cadenas y catarinas. olicación de cojinetes, coples, poleas, andas, cadenas y catarinas en stemas.	
5	Ejes de transmisión.	5.2 Dis 5.3 Dis 5.4 Ap	erminología. seño por carga estática. seño por carga dinámica. olicación de ejes de transmisión en stemas.	

6.- APRENDIZAJES REQUERIDOS

- Equilibrio de partículas.
- Diagramas de cuerpo libre.
- Equilibrio de cuerpos rígidos.
- Momentos de inercia.
- Rozamiento.
- Circulo de Mohr.
- Vigas.
- Esfuerzos normales y cortantes.
- Flexión y torsión
- Esfuerzos combinados.
- Análisis cinemático de engranes rectos, helicoidales, cónicos y sinfín-corona.

7.- SUGERENCIAS DIDÁCTICAS

- Investigar los temas de la asignatura en diversas fuentes de información.
- Utilizar catálogos y manuales industriales, de diferentes fabricantes, con el propósito de seleccionar elementos mecánicos reales en sus proyectos.
- Realizar visitas a industrias y centros de investigación en donde se observe el diseño, desarrollo e integración de elementos mecánicos, eléctricos y de sistemas computacionales.
- Resolver ejercicios y problemas en clase por equipos.
- Realizar modelos a escala que representen sistemas que integren dispositivos mecánicos, eléctricos, electrónicos y de sistemas computacionales para su análisis.
- Desarrollar proyectos que integren dispositivos mecánicos, eléctricos, electrónicos y de sistemas computacionales.
- Utilizar software para diseñar y seleccionar elementos.

8.- SUGERENCIAS DE EVALUACIÓN

- Reportes
- Examen escrito
- Exposiciones

9.- UNIDADES DE APRENDIZAJE

Unidad 1: Teoría De Fallas

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
El estudiante analizará los conceptos básicos de	 Definir los conceptos básicos y generalidades de la teoría de falla. Explicar los diferentes criterios de falla y su 	
fallas en los	aplicación.	5
elementos de máquinas así como	 Resolver problemas de concentración de esfuerzos. 	11
los factores que modifican los	 Analizar los efectos de la carga cíclica en la concentración de esfuerzos. 	12
esfuerzos.	 Resolver problemas de resistencia a la fatiga, para cargas fluctuantes, utilizando las teorías no lineales de Kimmelmann, Soderberg, etc. 	13

Unidad 2: Diseño De Tornillos, Sujetadores Y Uniones

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Analizará y diseñará uniones mecánicas con elementos convencionales (tornillos, sujetadores y soldadura, etc.)	 Definir y resolver problemas de pretenzado de pernos Calcular el par de apriete en el perno Analizar uniones a tracción con pernos y juntas, además de uniones sometidas a cargas dinámicas. Calcular la resistencia de cordones de soldadura, sometidos a distintas solicitaciones, bajo normas UNE, ISO, etc. 	5 11 12 13 15

Unidad 3: Engranes

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Desarrollará criterios de cálculo, dimensionamiento y	Realizar un estudio de cargas sobre los dientes de los engranes, así como de cargas dinámicas y tensiones en los dientes	5
selección de	de los engranes.	11
engranes para transmisión de potencia.	 Calcular la resistencia a la flexión, las tensiones de contacto y la resistencia superficial en los dientes de un engrane. 	12
	Calcular y analizar el rendimiento de un tren de engranes.	13
	 Investigar aplicaciones de engranes en sistemas. 	14

Unidad 4: Selección de Elementos

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Analizará y seleccionará con base a las especificaciones técnicas de manuales, catálogos de fabricantes y normas vigentes diferentes elementos mecánicos.	 Seleccionar un cojinete de acuerdo al tipo de carga y diseño que se este realizando. Diseñar y seleccionar elementos de un acoplamiento para la trasmisión de potencia. Utilizar software y manuales en la selección de: cojinetes, coples, poleas, bandas, así como cadenas y catarinas. Investigar aplicaciones de los elementos seleccionados en sistemas. 	1 2 3 4 5 6 7 8 9

Unidad 5: Ejes de Transmisión

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Diseñará ejes de transmisión, para	Diseñar ejes de transmisión.Calcular los máximos momentos	2
condiciones de carga estáticas y	flexionantes, vertical y horizontal, para obtener el diámetro del eje.	3
dinámicas.	 Obtener el diámetro necesario de un eje con base en el esfuerzo cortante admisible 	5
	para la trasmisión de potencia.Analizar condiciones de carga cíclica y	6
	fatiga en ejes de transmisión, con el fin de determinar su vida útil.	7
	 Investigar aplicaciones de ejes de transmisión en sistemas. 	10

10. FUENTES DE INFORMACIÓN

- Beer and Johnston, Mecánica Vectorial Para Ingenieros / Estática, Ed. Mc. Graw Hill
- 2. Beer and Johnston, *Mecánica Vectorial Para Ingenieros / Dinámica*, Ed. Mc. Graw Hill
- 3. Beer And Johnston, *Mecánica De Materiales*, Ed. Mc. Graw Hill
- 4. Manriquez, Transferencia Del Calor, Ed. Limusa
- 5. Joseph E, Shigley J. E., Mischke C. R., *Diseño en Ingeniería Mecánica,* Ed. Mc. Graw Hill
- 6. Norton R. L., Diseño De Maguinaria, Ed. Mc. Graw Hill
- 7. Mott. Diseño Maguinas. Ed. Prentice Hall
- 8. Gillet, Cinemática De Las Maquinas, Ed. CECSA
- Catálogos y Manuales del Fabricante, SKF, GATES, TIMKEN, DODGE, FAG FALK
- 10. Faires, Diseño de Elementos de Maguinas, Ed. CECSA
- 11. Berbard J., Hamrock B., Steven R., *Elementos De Máquinas*, Ed. Mc. Graw Hill
- 12. Spotts M. F., Shoup T. E., *Elementos De Máquinas*, Ed. Prentice Hall
- Deutschaman A., Michels W. J., Wilson C. E., Diseño De Máquinas, Teoría Y Práctica, Ed. CECSA
- 14. Faires V. M., Proyecto De Elementos De Maquinas, Ed. Editorial El Castillo
- 15. Normas, A. S. T. M., UNE, ISO

11.- PRÁCTICAS PROPUESTAS

- Determinar esfuerzos cortantes en diferentes ángulos y puntos.
- Determinar las resistencias en uniones soldadas y atornilladas.
- Determinar los esfuerzos en roscas de tornillos (fotoelasticidad tridimensional).
- Identificación de tipos y partes de cojinetes.