1.- DATOS DE LA ASIGNATURA

Nombre de la asignatura: Electrónica Digital

Carrera: Ingeniería Mecatrónica

Clave de la asignatura: MTF-0516

Horas teoría-horas práctica-créditos 2-4-8

2.- HISTORIA DEL PROGRAMA

Lugar y fecha de elaboración o revisión	Participantes	Observaciones (cambios y justificación)
Instituto Tecnológico de Reynosa, del 6 al 10 de diciembre del 2004.	Representante de las academias de ingeniería en Mecatrónica de los Institutos Tecnológicos.	Reunión Nacional de evaluación curricular de la carrera de Ingeniería en Mecatrónica
Instituto tecnológico de Reynosa de enero a Abril del 2005	Academia de Ingeniería en Mecatrónica	Análisis y enriquecimiento de las propuestas de los programas diseñados en la reunión nacional de evaluación
Instituto Tecnológico de Toluca, del 16 al 20 de mayo del 2005	Comité de consolidación de la carrera de Ingeniería en Mecatrónica	Definición de los programas de estudio de la carrera de Ingeniería en Mecatrónica

3.- UBICACIÓN DE LA ASIGNATURA

a). Relación con otras asignaturas del plan de estudio

Anteriores		Posteriores	
Asignaturas	Temas	Asignaturas	Temas
Matemáticas computacionales	- Implementación de algoritmos eficientes	Microcontroladores	- Arquitectura y programación básica de un sistema mínimo
Electrónica I	- Dispositivos semiconductores		de computadora
		Controladores Lógicos Programables	- Estructura y programación de un PLC's
		Circuitos hidráulicos y neumáticos	- Diseño automatizado de circuitos

b). Aportación de la asignatura al perfil del egresado

Proporcionar al alumno los conocimientos y las habilidades para proyectar, diseñar y construir sistemas digitales, mediante el uso de herramientas tecnológicas de vanguardia en el área de la electrónica digital.

4.- OBJETIVO(S) GENERAL(ES) DEL CURSO

El estudiante comprenderá los fundamentos matemáticos, leyes y principios de la electrónica digital reflejando su dominio en prácticas y diseño de sistemas digitales

Conocerá y utilizará los circuitos de mediana y gran escala de integración (MSI y LSI) para el diseño de sistemas digitales combinacionales y secuenciales, dominando un lenguaje de descripción de hardware.

5.- TEMARIO

Unidad	Temas		Subtemas
1	Códigos y sistemas	1.1	Electrónica analógica vs Electrónica
	numéricos binarios		digital
		1.2	Introducción a los niveles del diseño
		4.0	digital.
		1.3	Sistemas numéricos
			1.3.1 Binario, octal y hexadecimal
			1.3.2 Conversiones entre sistemas numéricos
			1.3.3 Operaciones básicas en binario
			1.3.3.1 Números negativos,
			complemento a 2
			1.3.3.2 Suma
			1.3.3.3 Resta
			1.3.3.4 Multiplicación
			1.3.3.5 División
			1.3.4 Códigos (ASCII, BCD, GRAY)
2	Álgebra de Boole y compuertas lógicas	2.1 2.2	Postulados básicos del álgebra booleana Teoremas fundamentales del álgebra booleana
		2.3	Funciones booleanas: AND, OR y NOT
			2.3.1 Representación de los circuitos
			lógicos básicos usando: circuitos
			eléctricos, electrónicos,
			neumáticos e hidráulicos
			2.3.2 Tablas de verdad
		0.4	2.3.3 Formas canónicas y estándar
		2.4	Otras operaciones lógicas: NAND, NOR,
		2.5	X-OR y X-NOR Familias lógicas TTL y CMOS
		2.5	2.5.1 Configuración interna
			2.5.2 Tipos de salida
			2.5.3 Voltajes de alimentación
			2.5.4 Consumo de potencia

5.- TEMARIO (Continuación)

Unidad	Temas	Subtemas
3	Simplificación de funciones booleanas	3.1 Mapas de Karnaugh 3.2 Método de Quine M°Clausky 3.3 Implementación de funciones booleanas 3.3.1 Utilizando compuertas lógicas 3.3.2 Implementación con NOR's 3.3.3 Implementación con NAND's 3.4 Implementación con circuitos neumáticos e hidráulicos
4	Principios, prácticas y ejemplos de diseño de circuitos combinacionales	 4.1 Procedimiento de diseño 4.2 Principales circuitos combinacionales y sus configuraciones en MSI 4.2.1 Sumadores 4.2.2 Restadores 4.2.3 Multiplexores/Demultiplexores 4.2.4 Decodificadores 4.3 Dipositivos lógicos programables con aplicaciones combinacionales 4.3.1 Lenguajes de descripción de hardware (VHDL) 4.3.2 PAL's 4.3.3 GAL's 4.3.4 FPGA's 4.3.5 Aplicaciones
5	Principios, prácticas y ejemplos de diseño de circuitos secuenciales	 5.1 Generador de pulsos 5.1.1 Concepto 5.1.2 Configuraciones 5.1.3 Señal de reloj 5.2 Flip-Flop 5.2.1 Flip-Flop R-S 5.2.2 Flip-Flop J-K 5.2.3 Flip-Flop T 5.2.4 Flip-Flop D 5.2.5 Flip-Flop maestro-esclavo 5.3 Tablas características, de estados y de exitación de los Flip-Flops 5.3.1 Flip-Flop R-S 5.3.2 Flip-Flop J-K 5.3.3 Flip-Flop D 5.4 Diagramas de estados

5.- TEMARIO (Continuación)

Unidad	Temas	Subtemas
		5.5 Ecuaciones de estados
		5.6 Principales circuitos secuenciales y sus
		configuraciones en MSI 5.6.1 Contadores
		5.6.2 Registros
		5.7 Registros con aplicaciones de memoria
		5.8 Dispositivos lógicos programables con
		aplicaciones secuenciales
		5.8.1 Lenguaje de descripción de
		hardware (VHDL)
		5.8.2 PAL's
		5.8.3 GAL's
		5.8.4 FPGA's
		5.8.5 CPLDL
		5.8.6 Aplicaciones

6.- APRENDIZAJES REQUERIDOS

- Lógica de programación
- Configuraciones de amplificadores con transistores
- Análisis de circuitos eléctricos.

7.- SUGERENCIAS DIDÁCTICAS

- Exposición por parte del profesor auxiliandose de herramientas didácticas tales como: presentaciones en power point, videos, internet, entre otros.
- Utilización de software para el diseño de sistemas digitales mediante un lenguaje de descripción de hardware
- Estudio del entorno para la detección de situaciónes reales en donde se pueda aplicar la electrónica digital en la solución de problemas
- Realización de prácticas de laboratorio
- Propiciar un ambiente para la participación frente a pizarrón en la solución de ejercicios propuestos
- Plenarias grupales para la retroalimentación de los conocimientos partiendo de planteamientos hechos por el profesor.

8.- SUGERENCIAS DE EVALUACIÓN

- Exámenes por unidades de aprendizaje
- Prácticas de laboratorio
- Investigaciones bibliográficas
- Ensayos
- Resúmenes
- Ejercicios propuestos
- Participaciones y exposiciones

9.- UNIDADES DE APRENDIZAJE

Unidad 1: Códigos y sistemas numéricos binarios

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
El estudiante conocerá la diferencia, ventajas	 Realizar una investigación documental sobre la electrónica analógica y la electrónica digital. Participar en plenarias donde se motive a los 	1
y desventajas entre la electrónica	alumnos, con preguntas preparadas por el profesor sobre el tema.	2
analógica y la electrónica digital además de	Escribir un resumen sobre el tema destacando las principales diferencias entre la electrónica	3
conocer y entender	anlógica y la digital, así como ventajas, desventaja entre ellas, incluyendo algunos	4
los sistemas binario, octal y	dispositivos en donde se aplican. • Describir los niveles de diseño digital (top-	5
hexadecimal; conversiones entre	down) • Realizar una investigación bibilográfica sobre el	6
ellos y que pueda realizar	origen de la computadoras y la necesidad del sistema binario además incluir formas de	7
operaciones básicas en los	representar información en las computadoras donde incluyan el código ASCII, BCD y GRAY.	8
diferentes sistemas.	 Realizar ejercicios en el pizarrón de conversión entre sistemas numéricos y de operciones de 	9
El estudiante	sumas y restas en binario, octal y hexadecimal. • Realizar ejercicios extra clase de conversiones	10
conocerá diferentes códigos	y operaciones básicas con los diferentes sistemas numéricos.	11
de representar información en los	 Participar en plenarias de discusión sobre los diferentes formas de representar la información 	12
sistemas digitales.	y la utilización y aplicación de los códigos. • Elaborar un reporte sobre las conclusiones del tema.	13

Unidad 2: Álgebra de Boole y compuertas lógicas

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Conocerá y	Investigar los postulados y teoremas	
aplicará los	fundamentales del álgebra booleana.	
postulados y	Participar en plenaria grupal para	
teoremas	retroalimentar el tema.	
fundamentales del álgebra booleana	 Realizar ejercicios donde se incluyan los postulados y los teoremas del álgebra 	
además de	booleana.	1
relacionarlos y	Comprobar la operación de las funciones	l
aplicar los operadores lógicos	lógicas AND, OR y NOT de manera física. A partir del ejercicio anterior, deducir el sigificado	2
básicos en circuitos eléctricos,	de un 0 y 1 lógico en la electrónica digital y establecer las tablas de verdad de las	3
electrónicos, neumáticos e	diferentes operaciones lógicas, así como introducir el símbolo del operador lógico.	4
hidráulicos.	 Investigar las tablas de verdad, los operadores y los circuitos de funcionamiento eléctricos, 	5
Aplicará las tablas de verdad de los	electrónicos, hidráulicos y neumáticos de las oepraciones lógicas: NAND, NOR, X-OR y X-	6
diferentes operadores lógicos	NOR.	7
para obtener la función booleana	 Participar en una plenaria grupal sobre la investigación. 	8
correspondiente, representándola en	 Resolver ejercicios donde se apliquen los teoremas y postulados del álgebra boolenada incluyendo los operadores recien vistos. 	9
las formás canónicas SOP y	Realizar práctica donde se demuestre el funcionamiento de los mismos.	10
POS; además, reducirá funciones	Participar en equipos para investigar las diferentes familias lógicas, incluyendo los	11
booleanas utilizando los	puntos marcados en el temario, y exponer en clase.	12
teoremas del álgebra de Boole.	Preparar un cuestionario sobre el tema que sus compañeros deberán contestar. Al final de las	13
Conocerá qué es una familia lógica y	exposiciones realizar una plenaria para destacar las diferencias principales de cada famila lógica.	
las diferencias entre ellas.	Elaborar un resumen de las conclusiones sobre lo expuesto en la plenaria.	

Unidad 3: Simplificación de funciones booleanas

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Simplificará funciones booleanas mediante los métodos de mapas de Karnaugh y McClausky; además Implementará las funciones con diferentes compuertas lógicas. Implementará funciones lógicas utlizandos solo compuertas NOR's o NAND's y con circuitos hidráulicos y neumáticos.	 Realizar ejemplos y ejercicios de simplifación de funciones booleanas mediante mapas de Karnaugh de hasta 4 variables. Comprobar mediante la implementación de un circuito físico el método. Aplicar el método de simplifación de funciones booleanas de Quine McClausky. Comprobar mediante la implementación de un circuito físico el método. Analizar en plenaria ventajas y desventajas de cada uno de los métodos vistos. Investigar los números del fabricante de las diferentes compuertas lógicas que se utilizarán (NOT, OR, AND, NAND, NOR, X-OR, X-NOR). Realizar diagramas para implementar funciones booleanas y comprobar algunas, mediante práctica de laboratorio. Demostrar de manera analítica y práctica que cualquier circuito digital se puede implementar utilizando solo compuertas NOR's o NAND's. Evaluar la ventaja o desventaja de utilizar solo compuertas NOR's o NAND's. Demostrar que las funciones booleanas también se pueden implementar con circuitos neumáticos e hidráulicos mediante la construcción física de algunos de ellos. 	1,2,3,4,5,6,7, 8,9,10,11,12, 13

Unidad 4: Principios, prácticas y ejemplos de diseño de circuitos combinacionales.

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Diseñará circuitos combinacionales	Deducir una metodología para el diseño de circuitos combinacionales.	mormacion
utilizando un lenguaje de	Diseñar: Sumadores, restadores, multiplexores, demultiplexores,	1
descripción de hardware para la	decodificadores entre otros. • Investigar los números comerciales y tabla de	2
utilización de PAL's, GAL's y FPGA's en	verdad de cada uno de los circuitos previamente diseñados.	3
diversas aplicaciones.	 Comprobar físicamente algunos de ellos. Investigar qué es un lenguaje de descripción 	4
	de hardware, una PAL, una GAL y un FPGA. • Discutir en plenaria los conceptos	5
	consultados. • Utilizando un lenguaje de descripción de	6
	hardware, realizar los diseños de sumandores, restadores, decodificadores,	7
	multiplexores, etc. • Implementar físicamente los circuitos	8
	previamente diseñados utilizando PAL, GAL o FPGA.	9
	Elaborar un ensayo sobre las ventajas y desventajas del diseño combinacional	10
	utilizando SSI (pequeña escala de integración) y un lenguaje de descripción de	11
	hardware. • Detectar áreas de oportunidad para la	12
	aplicación de circuitos digitales combinacionales y de ser posible llevarlo a	13
	cabo.	

Unidad 5: Principios, prácticas y ejemplos de diseño de circuitos secuenciales.

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Diseñará circuitos secuenciales mediante el uso de un lenguaje de descripción de	 Investigar diferentes configuraciones para la generación de pulsos. Construir un circuito que genere pulsos de reloj para flip-flops. Realizar un resumen donde se establezcan 	
hardware en PAL's, GAL's y FPGA's para diversas	que es un flip-flop, los diferentes tipos que existen, así como sus características de funcionamiento.	
aplicaciones.	 Comprobar mediante práctica de laboratorio el funcionamiento de los flip-flops 	1
	 Proponer una definición de diagrama de estados, tabla de estado y ecuación de 	2
	estado; comparar con las definiciones de libros y discutir las diferencias.	3
	Obtener ecuaciones de estado a partir de tablas de estados propuestas.	4
	 Investigar qué es un contador, registro, los números comerciales, así como su funcionamiento. 	5
	 Mediante una plenaria grupal discutir sobre algunas aplicaciones de estos circuitos. 	6
	 Comprobar el funcionamiento de algunos de ellos en el laboratorio. 	7
	 Investigar sobre registros con aplicaciones de memoria, discutir en clase y elaborar un resumen sobre el tema. 	8 9
	 Mediante el uso de un lenguaje de descripción de hardware, diseñar circuitos 	10
	secuenciales tales como: contadores, registros de corrimiento, etc. y comprobar su	11
	funcionamiento mediante práctica de laboratorio.	12
	 Discutir a través de una plenaria grupal algunas aplicaciones de los circuitos secuenciales. Detectar en el entorno áreas de oportunidad para la aplicación de circuitos digitales secuenciales. 	13
	 Utilizando los conocimientos adquiridos en la materia plantear una solución real y de ser posible llevarla a cabo, considerando las implicaciones de ruido, blindaje y tierras. 	

10. FUENTES DE INFORMACIÓN

- 1. Morris Mano, M. Diseňo Digital, Ed. Person Educación, 1987
- 2. De la Cruz Laso César René. *Fundamentos De Diseño Digital*. Ed. Trillas, 1988.
- 3. Tocci, Ronald J. y Widmer Neal S. Sistemas Digitales Principios y Aplicaciones. Ed. Person Educación, 8^{va}. Edición. 2003
- 4. Tokheim, Roger L. Electrónica Digital, Ed. Reverté, 1991
- 5. Hermosa Donante, Antonio, *Electrónica Digital Fundamental*, Ed. Alfaomega-Marcombo, 1995
- 6. Dempsey, John A. *Electrónica Digital Con Aplicaciones MSI*. Ed. Alfaomega, 1996
- 7. Wakerly John F. *Diseňo Digital Principios y Prácticas*. Ed. Prentice Hall, 1992.
- 8. Wakerly John F. Digital Design principles and practices and xilinx 4.2i Student package 2004 Third Edition Updated
- 9. Floyd, Thomas L. *Fundamentos De Sistemas Digitales*, Ed. Prentice Hall 7^{a.} Edición
- Morris Mano, M. Lógica Digital y Diseño De Computadores. Ed. Prentice Hall, 1982
- 11. Blandes, Miguel. Lecciones de Electrónica Digital, Ed. Marcombo, 1987
- 12. Gajsky, Daniel D., *Principios de Diseño Digital*. Ed. Prentice Hall, 1997
- Hayes, John P. Diseño Lógico Digital. Ed. Addison-Wesley Iberoamericana, 1996
- 14. Nashelsky, Louis. Fundamentos de Tecnología Digital. Ed. Limusa, 1989

11.- PRÁCTICAS PROPUESTAS

- Construir circuitos eléctricos, electrónicos, hidráulicos y neumáticos que representan las operaciones lógicas básicas NOT, AND y OR.
- Comprobar las compuertas lógicas básicas NOT, AND, OR, NAND, NOR, X-OR y X-NOR.
- Comprobar funciones lógicas mediante compuertas básicas
- Construir un circuito que genere una señal de reloj.
- Diseñar sistemas digitales combinacionales y secuenciales básicos utilizando circuitos en SSI y MSI.
- Diseñar sistemas digitales combinacionales y secuenciales utilizando un lenguaje de descripción de hardware.
- Desarrollar aplicaciones diversas con circuitos LSI (PAL's, GAL's y FPGA's utilizando un lenguaje de descripción de hardware).