1.- DATOS DE LA ASIGNATURA

Nombre de la asignatura: **Seminario de Mecatrónica**

Carrera: Ingeniería Mecatrónica

Clave de la asignatura: MTG-0537

Horas teoría-horas práctica-créditos: **0-2-2**

2.- HISTORIA DEL PROGRAMA

Lugar y fecha de elaboración o revisión	Participantes	Observaciones (cambios y justificación)
Instituto Tecnológico de Reynosa, del 6 al 10 de diciembre del 2004.	Representantes de las Academias de Ingeniería Mecatrónica de los Institutos Tecnológicos.	Reunión Nacional de Evaluación Curricular de la carrera de Ingeniería Mecatrónica.
Instituto Tecnológico de Querétaro, de enero a abril del 2005.	Academia de Ingeniería Mecatrónica.	Análisis y enriquecimiento de las propuestas de los programas diseñados en la Reunión Nacional de evaluación
Instituto Tecnológico de Toluca, del 16 al 20 de mayo del 2005	Comité de consolidación de la carrera de Ingeniería Mecatrónica	Definición de los programas de estudio de la carrera de Ingeniería Mecatrónica

3.- UBICACIÓN DE LA ASIGNATURA

a). Relación con otras asignaturas del plan de estudio

Anteriores		Posteriores		
Asignaturas	Temas	Asignaturas	Temas	
Taller de	- Diseño de la	El Seminario se		
Investigación II.	propuesta de	cursa		
	investigación.	obligatoriamente en		
	- Redacción del	el último semestre		
	proyecto de	que cursará el		
	investigación.	estudiante.		
	- Presentación del			
	proyecto de			
	investigación.			

b). Aportación de la asignatura al perfil del egresado

Proporcionar la capacidad de:

- Aplicar el conocimiento de las ciencias básicas, ciencias de la ingeniería, diseño de ingeniería y ciencias sociales y humanidades.
- Diseñar y conducir experimentos; así como el análisis e interpretación de datos.
- Diseñar sistemas, componentes, o procesos para satisfacer necesidades del sector productivo.
- Trabajar en equipos interdisciplinarios.
- Identificar, formular, y solucionar problemas de ingeniería.
- Realizar una comunicación asertiva.
- Usar técnicas, habilidades, y herramientas de vanguardia necesarias para la práctica de la ingeniería.

4.- OBJETIVO(S) GENERAL(ES) DEL CURSO

El estudiante realizará el diseño, proyecto y manufactura del prototipo de un sistema de ingeniería haciendo uso de la filosofía de diseño mecatrónica.

5.- TEMARIO

Unidad	Temas		Subtemas
1	Integración entre Diseño-	1.1	Metodología del proceso de diseño de un
	Proyecto-Manufactura de		sistema de ingeniería.
	Sistemas de Ingeniería.		1.1.1 Determinación y delimitación de problemas.
			1.1.2 Análisis de diversas soluciones.
			1.1.3 Toma de decisión de la solución óptima.
			1.1.4 Repetición del ciclo.
		1.2	Herramientas de diseño en ingeniería.
			1.2.1 Modelación.
			1.2.2 Simulación.
		1.3	Proyecto de un sistema de ingeniería:
			Elaboración de Documento Técnico.
		1.4	Manufactura Avanzada de un sistema de ingeniería.

6.- APRENDIZAJES REQUERIDOS

- Desarrollo de un protocolo de investigación.
- Diseño y estructuración de un proyecto de investigación.
- Fundamentos científicos y herramientas tecnológicas: sensores; actuadores; microcontroladores; mecanismos de precisión; modelación, simulación y control de sistemas dinámicos; electrónica analógica y digital; interfases electrónicas; programación en tiempo real; CAD-CAM-CAE.

7.- SUGERENCIAS DIDÁCTICAS

- El estudiante participará con su investigación, al menos en dos foros de divulgación científica, uno nacional y otro internacional, ambos con arbitraje.
- El estudiante podrá acreditar su Residencia Profesional mediante la investigación realizada de una manera sobresaliente, previo aval de la Academia de Ingeniería Mecatrónica.
- El estudiante podrá obtener su titulación mediante la investigación realizada de una manera sobresaliente, previo aval de la Academia de Ingeniería Mecatrónica.

8.- SUGERENCIAS DE EVALUACIÓN

- Participación en plenarias
- Elaboración de reportes técnicos escritos
- Exposición en plenarias auxiliado por medios audiovisuales.
- Uso de medios informáticos como herramientas que optimizan el tiempo en el proceso de investigación.
- Participación en foros académicos arbitrados a nivel nacionales e internacional.
- Funcionamiento del prototipo considerando aspectos estéticos, económicos, técnicos, sociales, comerciales, emprendeduría (incubación de empresas), innovación, creatividad, sustentabilidad, impacto en los sectores productivo y de servicios, entre otros.

9.- UNIDADES DE APRENDIZAJE

Unidad 1: Integración entre Diseño-Proyecto-Manufactura de Sistemas de Ingeniería.

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
El estudiante integrará verticalmente el diseño, proyecto y manufactura de sistemas de ingeniería.	 El alumno, coordinado por su profesor, realizará una búsqueda de problemas a partir de necesidades detectadas en el entorno de su Institución y que puedan abordarse y solucionarse desde la perspectiva de diseño de la ingeniería mecatrónica. El alumno elaborará un documento técnico que muestre la interdisciplinariedad del proyecto. El alumno construirá el prototipo de su proyecto haciendo uso de la Manufactura Avanzada. 	2

10. FUENTES DE INFORMACIÓN

Obras de referencia:

- Index Book
- 2. Tesauro de UNESCO
- 3. Resúmenes Analíticos
- 4. Bancos de datos físicos y electrónicos

Libros de Texto:

- 1. Monotemáticos
- 2. Especializados

Hemerotecas:

1. Revistas periódicas especializadas

Congresos, Simposias:

1. Proceeding (Memorias del evento)

Especialistas investigadores:

- 1. Notas
- 2. Diarios
- 3. Apuntes
- 4. Registros
- 5. Bitácoras

Libros de Texto sugeridos:

- 1. Ralph Ford and Chris Coulson: "Design for Electrical and Computer Engineers: Theory Concepts and Practice"; McGraw-Hill Primis Custom Publishing; 2005.
- 2. Dobrivoje Popovic, Ljubo Vlacic and Dobrivojie: "Mechatronics in Engineering Design and Product Development"; Marcel Dekker; 1998.